On démontre que tout fibré vectoriel holomorphe de rang deux, non-filtrable, sur une surface elliptique non-kählérienne est une modification élémentaire d'une image directe d'un fibré en droites par un revêtement double de la surface.
We prove that any non-filtrable holomorphic rank-2 vector bundle on a non-Kähler elliptic surface is an elementary modification of a direct image of a line bundle by a double covering of the surface.
Accepté le :
Publié le :
@article{CRMATH_2003__336_7_581_0, author = {Aprodu, Marian and Toma, Matei}, title = {Une {Note} sur les fibr\'es holomorphes non-filtrables}, journal = {Comptes Rendus. Math\'ematique}, pages = {581--584}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2003}, doi = {10.1016/S1631-073X(03)00139-0}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00139-0/} }
TY - JOUR AU - Aprodu, Marian AU - Toma, Matei TI - Une Note sur les fibrés holomorphes non-filtrables JO - Comptes Rendus. Mathématique PY - 2003 SP - 581 EP - 584 VL - 336 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00139-0/ DO - 10.1016/S1631-073X(03)00139-0 LA - fr ID - CRMATH_2003__336_7_581_0 ER -
%0 Journal Article %A Aprodu, Marian %A Toma, Matei %T Une Note sur les fibrés holomorphes non-filtrables %J Comptes Rendus. Mathématique %D 2003 %P 581-584 %V 336 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(03)00139-0/ %R 10.1016/S1631-073X(03)00139-0 %G fr %F CRMATH_2003__336_7_581_0
Aprodu, Marian; Toma, Matei. Une Note sur les fibrés holomorphes non-filtrables. Comptes Rendus. Mathématique, Tome 336 (2003) no. 7, pp. 581-584. doi : 10.1016/S1631-073X(03)00139-0. http://www.numdam.org/articles/10.1016/S1631-073X(03)00139-0/
[1] On the holomorphic rank-2 vector bundles with trivial discriminant over non-Kähler elliptic bundles, J. Math. Kyoto Univ., Volume 42 (2002) no. 4
[2] Vector bundles over an elliptic curve, Proc. London Math. Soc., Volume 7 (1957), pp. 181-207
[3] Sur l'existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques, J. Reine Angew. Math., Volume 378 (1987), pp. 1-31
[4] Holomorphic Vector Bundle Over Compact Complex Surfaces, Lecture Notes in Math., 1624, Springer-Verlag, 1996
[5] Holomorphic 2-vector bundles on non-algebraic 2-tori, J. Reine Angew. Math., Volume 363 (1985), pp. 47-58
[6] Néron–Severi group for torus quasi bundles over curves, Moduli of Vector Bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math., 179, Dekker, New York, 1996, pp. 11-32
[7] Rank two vector bundles over regular elliptic surfaces, Invent. Math., Volume 96 (1989), pp. 283-332
[8] Algebraic Surfaces and Holomorphic Vector Bundles, Universitext, Springer-Verlag, 1998
[9] Countability of the Douady space of a complex space, Japan J. Math., Volume 5 (1979), pp. 431-447
[10] On the Douady space of a compact complex space in the category . II, Publ. Res. Inst. Math. Sci., Volume 20 (1984), pp. 461-489
[11] On compact analytic surfaces. III, Ann. Math., Volume 71 (1960), pp. 111-152
[12] Holomorphic vector bundles on non-algebraic surfaces, C. R. Acad. Sci. Paris, Volume 334 (2002), pp. 1-6
[13] M. Toma, Holomorphic vector bundles on non-algebraic surfaces, Dissertation, Bayreuth, 1992
[14] Stable bundles with small c2 over 2-dimensional complex tori, Math. Z., Volume 232 (1999), pp. 511-525
[15] Compact moduli spaces of stable sheaves over non-algebraic surfaces, Documenta Math., Volume 6 (2001), pp. 9-27
[16] Relating vector bundles on a nonalgebraic surface with those on its blow-up, An. Stiint. Univ. “Ovidius” Constanta Ser. Mat., Volume 5 (1997), pp. 111-114
Cité par Sources :