Nous appliquons les règles de sommation de Case à l'étude de propriétés spectrales de matrices de Jacobi d'un certain type. Nous obtenons un analogue discret d'un résultat de Molchanov, Novitskii and Vainberg (Comm. Math. Phys. 216 (2001) 195–213) comme un des corollaires du théorème principal.
We use sum rules of a special form to study spectral properties of Jacobi matrices. As a consequence of the main theorem, we obtain a discrete counterpart of a result by Molchanov, Novitskii and Vainberg (Comm. Math. Phys. 216 (2001) 195–213).
Accepté le :
Publié le :
@article{CRMATH_2003__336_7_611_0, author = {Kupin, Stanislav}, title = {On sum rules of special form for {Jacobi} matrices}, journal = {Comptes Rendus. Math\'ematique}, pages = {611--614}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2003}, doi = {10.1016/S1631-073X(03)00132-8}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00132-8/} }
TY - JOUR AU - Kupin, Stanislav TI - On sum rules of special form for Jacobi matrices JO - Comptes Rendus. Mathématique PY - 2003 SP - 611 EP - 614 VL - 336 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00132-8/ DO - 10.1016/S1631-073X(03)00132-8 LA - en ID - CRMATH_2003__336_7_611_0 ER -
Kupin, Stanislav. On sum rules of special form for Jacobi matrices. Comptes Rendus. Mathématique, Tome 336 (2003) no. 7, pp. 611-614. doi : 10.1016/S1631-073X(03)00132-8. http://www.numdam.org/articles/10.1016/S1631-073X(03)00132-8/
[1] Orthogonal polynomials from the viewpoint of scattering theory, J. Math. Phys., Volume 15 (1974), pp. 2166-2174
[2] Orthogonal polynomials, II, J. Math. Phys., Volume 16 (1975), pp. 1435-1440
[3] Lieb–Thirring inequalities for Jacobi matrices, J. Approx. Theory, Volume 118 (2002), pp. 106-130
[4] R. Killip, B. Simon, Sum rules for Jacobi matrices and their applications to spectral theory, Ann. Math., to appear
[5] S. Kupin, On a spectral property of Jacobi matrices, Proc. Amer. Math. Soc, accepted
[6] A. Laptev, S. Naboko, O. Safronov, On new relations between spectral properties of Jacobi matrices and their coefficients, to appear
[7] First KdV integrals and absolutely continuous spectrum for 1-D Schrödinger operator, Comm. Math. Phys., Volume 216 (2001), pp. 195-213
[8] B. Simon, A. Zlatos, Sum rules and the Szegö condition for orthogonal polynomials on the real line, submitted
[9] P. Yuditskii, private communication
Cité par Sources :