Nous démontrons, à un facteur logarithmique près, la conjecture concernant la dualité de nombres d'entropie dans le cas où l'un de deux corps est un ellipsoı̈de.
We verify, up to a logarithmic factor, the duality conjecture for entropy numbers in the case where one of the bodies is an ellipsoid.
Accepté le :
Publié le :
@article{CRMATH_2003__336_6_479_0, author = {Artstein, Shiri and Milman, Vitali D. and Szarek, Stanislaw J.}, title = {More on the duality conjecture for entropy numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {479--482}, publisher = {Elsevier}, volume = {336}, number = {6}, year = {2003}, doi = {10.1016/S1631-073X(03)00102-X}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00102-X/} }
TY - JOUR AU - Artstein, Shiri AU - Milman, Vitali D. AU - Szarek, Stanislaw J. TI - More on the duality conjecture for entropy numbers JO - Comptes Rendus. Mathématique PY - 2003 SP - 479 EP - 482 VL - 336 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00102-X/ DO - 10.1016/S1631-073X(03)00102-X LA - en ID - CRMATH_2003__336_6_479_0 ER -
%0 Journal Article %A Artstein, Shiri %A Milman, Vitali D. %A Szarek, Stanislaw J. %T More on the duality conjecture for entropy numbers %J Comptes Rendus. Mathématique %D 2003 %P 479-482 %V 336 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(03)00102-X/ %R 10.1016/S1631-073X(03)00102-X %G en %F CRMATH_2003__336_6_479_0
Artstein, Shiri; Milman, Vitali D.; Szarek, Stanislaw J. More on the duality conjecture for entropy numbers. Comptes Rendus. Mathématique, Tome 336 (2003) no. 6, pp. 479-482. doi : 10.1016/S1631-073X(03)00102-X. http://www.numdam.org/articles/10.1016/S1631-073X(03)00102-X/
[1] Proportional concentration phenomena, Israel J. Math., Volume 132 (2002), pp. 337-358
[2] On the duality problem for entropy numbers of operators, Geometric Aspects of Functional Analysis (1987–88), Lecture Notes in Math., 1376, Springer, Berlin, 1989, pp. 50-63
[3] Extensions of Lipschitz mappings into a Hilbert space, Conference in Modern Analysis and Probability, New Haven, CO, Contemp. Math., 26, American Mathematical Society, Providence, RI, 1982, pp. 189-206
[4] On the covering numbers of convex bodies, Geometric Aspects of Functional Analysis (1985–86), Lecture Notes in Math., 1267, Springer, Berlin, 1987, pp. 82-95
[5] A note on a low -estimate, Geometry of Banach Spaces, Strobl, 1989, London Math. Soc. Lecture Note Ser., 158, Cambridge University Press, Cambridge, 1990, pp. 219-229
[6] Entropy and asymptotic geometry of non-symmetric convex bodies, Adv. in Math., Volume 152 (2000) no. 2, pp. 314-335
[7] A geometric lemma and duality of entropy numbers, Geometric Aspects of Functional Analysis (1996–2000), Lecture Notes in Math., 1745, Springer, Berlin, 2000, pp. 191-222
[8] A geometric approach to duality of metric entropy, C. R. Acad. Sci. Paris, Sér. I, Volume 332 (2001) no. 2, pp. 157-162
[9] Theorie der Operatorenideale (Zusammenfassung), Friedrich-Schiller-Universität Jena, 1972
[10] A new approach to several results of V. Milman, J. Reine Angew. Math., Volume 393 (1989), pp. 115-131
[11] The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math., 94, Cambridge University Press, Cambridge, 1989
[12] Dualité des nombres d'entropie pour des opérateurs à valeurs dans un espace de Hilbert, C. R. Acad. Sci. Paris, Sér. I, Volume 305 (1987) no. 7, pp. 299-301
Cité par Sources :