Cette Note est consacrée à l'étude d'un problème d'interaction fluide–solide rigide. Le mouvement du fluide est modélisé par les équations de Navier–Stokes écrites dans un domaine qui dépend du déplacement du solide rigide. Notre résultat principal donne l'existence et l'unicité de solutions fortes, ces dernières étant globales tant que le corps rigide ne touche pas le bord.
This Note is devoted to the study of a fluid–rigid body interaction problem. The motion of the fluid is modelled by the Navier–Stokes equations, written in an unknown bounded domain depending on the displacement of the rigid body. Our main result yields the existence and uniqueness of strong solutions, which are global provided that the rigid body does not touch the boundary.
Accepté le :
Publié le :
@article{CRMATH_2003__336_5_453_0, author = {Takahashi, Tak\'eo}, title = {Existence of strong solutions for the problem of a rigid-fluid system}, journal = {Comptes Rendus. Math\'ematique}, pages = {453--458}, publisher = {Elsevier}, volume = {336}, number = {5}, year = {2003}, doi = {10.1016/S1631-073X(03)00081-5}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00081-5/} }
TY - JOUR AU - Takahashi, Takéo TI - Existence of strong solutions for the problem of a rigid-fluid system JO - Comptes Rendus. Mathématique PY - 2003 SP - 453 EP - 458 VL - 336 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00081-5/ DO - 10.1016/S1631-073X(03)00081-5 LA - en ID - CRMATH_2003__336_5_453_0 ER -
%0 Journal Article %A Takahashi, Takéo %T Existence of strong solutions for the problem of a rigid-fluid system %J Comptes Rendus. Mathématique %D 2003 %P 453-458 %V 336 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(03)00081-5/ %R 10.1016/S1631-073X(03)00081-5 %G en %F CRMATH_2003__336_5_453_0
Takahashi, Takéo. Existence of strong solutions for the problem of a rigid-fluid system. Comptes Rendus. Mathématique, Tome 336 (2003) no. 5, pp. 453-458. doi : 10.1016/S1631-073X(03)00081-5. http://www.numdam.org/articles/10.1016/S1631-073X(03)00081-5/
[1] Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, Volume 25 (2000) no. 5–6, pp. 1019-1042
[2] Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal., Volume 146 (1999) no. 1, pp. 59-71
[3] On weak solutions for fluid–rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations, Volume 25 (2000) no. 7–8, pp. 1399-1413
[4] E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid, Preprint
[5] On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Rational Mech. Anal., Volume 148 (1999) no. 1, pp. 53-88
[6] Existence for an unsteady fluid–structure interaction problem, Math. Modeling Numer. Anal., Volume 34 (2000) no. 3, pp. 609-636
[7] Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., Volume 2 (2000) no. 3, pp. 219-266
[8] On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl., Volume 9 (1999) no. 2, pp. 633-648
[9] Zur Bewegung einer Kugel in einer zähen Flüssigkeit, Doc. Math., Volume 5 (2000), pp. 15-21 (electronic)
[10] On existence of solutions of the Navier–Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 24 (1977) no. 2, pp. 303-319
[11] The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, Dinamika Splošn. Sredy (Vyp.18, Dinamika Zidkost. so Svobod. Granicami) (1974), pp. 249-253 (255)
[12] Mathematical Topics in Fluid Mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications, 3, Clarendon Press, Oxford University Press, New York, 1996 (Incompressible Models, Oxford Science Publications)
[13] Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rational Mech. Anal., Volume 161 (2002) no. 2, pp. 113-147
[14] Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math., Volume 4 (1987) no. 1, pp. 99-110
[15] T. Takahashi, Existence of strong solutions for the equations modelling the motion of a rigid-fluid system in a bounded domain, Preprint
[16] T. Takahashi, M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., to appear
[17] J.L. Vázquez, E. Zuazua, Large time behavior for a simplified 1d model of fluid–solid interaction, Preprint
Cité par Sources :