Soit N un nombre premier. On donne un critère permettant de vérifier si les points rationnels de la courbe modulaire Xsplit(N) sont triviaux (c'est-à-dire des pointes ou des points fournis par la multiplication complexe). On montre ensuite que ce critère est satisfait si N est assez grand et vérifie certaines congruences explicites.
We give a criterion to check if, given a prime number N, the only rational points of the modular curve Xsplit(N) are trivial (i.e., cusps or points furnished by complex multiplication). We then prove that this criterion is verified for large enough N satisfying some explicit congruences.
Accepté le :
Publié le :
@article{CRMATH_2003__336_5_377_0, author = {Parent, Pierre}, title = {Triviality of $ X_{\mathrm{split}}\mathrm{(N)(}\mathbb{Q})$ for certain congruence classes {of~\protect\emph{N}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {377--380}, publisher = {Elsevier}, volume = {336}, number = {5}, year = {2003}, doi = {10.1016/S1631-073X(03)00078-5}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00078-5/} }
TY - JOUR AU - Parent, Pierre TI - Triviality of $ X_{\mathrm{split}}\mathrm{(N)(}\mathbb{Q})$ for certain congruence classes of N JO - Comptes Rendus. Mathématique PY - 2003 SP - 377 EP - 380 VL - 336 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00078-5/ DO - 10.1016/S1631-073X(03)00078-5 LA - en ID - CRMATH_2003__336_5_377_0 ER -
%0 Journal Article %A Parent, Pierre %T Triviality of $ X_{\mathrm{split}}\mathrm{(N)(}\mathbb{Q})$ for certain congruence classes of N %J Comptes Rendus. Mathématique %D 2003 %P 377-380 %V 336 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(03)00078-5/ %R 10.1016/S1631-073X(03)00078-5 %G en %F CRMATH_2003__336_5_377_0
Parent, Pierre. Triviality of $ X_{\mathrm{split}}\mathrm{(N)(}\mathbb{Q})$ for certain congruence classes of N. Comptes Rendus. Mathématique, Tome 336 (2003) no. 5, pp. 377-380. doi : 10.1016/S1631-073X(03)00078-5. http://www.numdam.org/articles/10.1016/S1631-073X(03)00078-5/
[1] A rigid Gross–Zagier formula and arithmetic applications, Ann. of Math. (2), Volume 146 (1997), pp. 111-147 (With an appendix by B. Edixhoven)
[2] Heights and the special values of L-series, Canadian Math. Soc. Conference Proceedings, Vol. 7, American Mathematical Society, Providence, RI, 1987, pp. 115-187
[3] Finiteness of the Shafarevich–Tate group and the group of rational points for some modular Abelian varieties, Leningrad Math. J., Volume 1 (1990) no. 5
[4] Rational isogenies of prime degree, Invent. Math., Volume 44 (1978), pp. 129-162
[5] Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996), pp. 437-449
[6] Sur la nature non-cyclotomique des points d'ordre fini des courbes elliptiques, avec un appendice de E. Kowalski et Ph. Michel, Duke Math. J., Volume 110 (2001) no. 1, pp. 81-119
[7] The field generated by the points of small prime order on an elliptic curve, Internat. Math. Res. Notices, Volume 20 (2001), pp. 1075-1082
[8] La méthode des graphes : exemples et applications, Proceedings of the International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields, Katata, 1986, Nagoya University, Nagoya, 1986, pp. 217-242
[9] J.-F. Mestre, J. Oesterlé, Courbes elliptiques de conducteur premier, Manuscript
[10] Rational points on the modular curves Xsplit(p), Compositio Math., Volume 52 (1984), pp. 115-137
[11] Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331
[12] Uniform disribution on Heegner points, Invent. Math., Volume 148 (2002) no. 1, pp. 1-46
Cité par Sources :