Partial Differential Equations/Mathematical Problems in Mechanics
Weak convergence results for inhomogeneous rotating fluid equations
[Résultats de convergence faible pour des équations des fluides tournants non homogènes]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 5, pp. 401-406.

On considère les équations modélisant des fluides incompressibles et visqueux en trois dimensions d'espace, en rotation rapide autour d'un vecteur non homogène B(x) : on généralise ainsi le modèle habituel des fluides tournants (où B est constant). On montre la convergence des solutions de Leray vers un champ de vecteurs qui vérifie les équations habituelles de Navier–Stokes 2D dans les régions de l'espace où B est constant, avec des conditions aux limites de Dirichlet, et une équation de type chaleur ailleurs. La méthode de démonstration repose sur des arguments de compacité faible.

We consider the equations governing incompressible, viscous fluids in three space dimensions, rotating around an inhomogeneous vector B(x): this is a generalization of the usual rotating fluid model (where B is constant). We prove the weak convergence of Leray-type solutions towards a vector field which satisfies the usual 2D Navier–Stokes equation in the regions of space where B is constant, with Dirichlet boundary conditions, and a heat–type equation elsewhere. The method of proof uses weak compactness arguments.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00066-9
Gallagher, Isabelle 1 ; Saint-Raymond, Laure 2

1 Centre de mathématiques, UMR 7640, École polytechnique, 91128 Palaiseau, France
2 Laboratoire Jacques-Louis Lions, UMR 7598, boı̂te 187, Université Paris-VI, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMATH_2003__336_5_401_0,
     author = {Gallagher, Isabelle and Saint-Raymond, Laure},
     title = {Weak convergence results for inhomogeneous rotating fluid equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {401--406},
     publisher = {Elsevier},
     volume = {336},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00066-9},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00066-9/}
}
TY  - JOUR
AU  - Gallagher, Isabelle
AU  - Saint-Raymond, Laure
TI  - Weak convergence results for inhomogeneous rotating fluid equations
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 401
EP  - 406
VL  - 336
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00066-9/
DO  - 10.1016/S1631-073X(03)00066-9
LA  - en
ID  - CRMATH_2003__336_5_401_0
ER  - 
%0 Journal Article
%A Gallagher, Isabelle
%A Saint-Raymond, Laure
%T Weak convergence results for inhomogeneous rotating fluid equations
%J Comptes Rendus. Mathématique
%D 2003
%P 401-406
%V 336
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00066-9/
%R 10.1016/S1631-073X(03)00066-9
%G en
%F CRMATH_2003__336_5_401_0
Gallagher, Isabelle; Saint-Raymond, Laure. Weak convergence results for inhomogeneous rotating fluid equations. Comptes Rendus. Mathématique, Tome 336 (2003) no. 5, pp. 401-406. doi : 10.1016/S1631-073X(03)00066-9. http://www.numdam.org/articles/10.1016/S1631-073X(03)00066-9/

[1] Babin, A.; Mahalov, A.; Nicolaenko, B. Global regularity of 3D rotating Navier–Stokes equations for resonant domains, Indiana Univ. Math. J., Volume 48 (1999), pp. 1133-1176

[2] Chemin, J.-Y.; Desjardins, B.; Gallagher, I.; Grenier, E. Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Stud. Math. Appl., 31, 2002, pp. 171-191

[3] Gallagher, I. Applications of Schochet's methods to parabolic equations, J. Math. Pures Appl., Volume 77 (1998), pp. 989-1054

[4] I. Gallagher, L. Saint-Raymond, Weak convergence results for inhomogeneous rotating fluid equations, Preprint

[5] Grenier, E. Oscillatory perturbations of the Navier–Stokes equations, J. Math. Pures Appl., Volume 76 (1997), pp. 477-498

[6] Lions, P.-L.; Masmoudi, N. Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris, Sér. I, Volume 329 (1999), pp. 387-392

Cité par Sources :