Partial Differential Equations/Probability Theory
A linearized Kuramoto–Sivashinsky PDE via an imaginary-Brownian-time-Brownian-angle process
Comptes Rendus. Mathématique, Tome 336 (2003) no. 4, pp. 309-314.

Nous introduisons un nouveau processus de temps brownien imaginaire et d'angle brownien, qu'on appelle aussi le processus de Kuramoto–Sivashinsky linéaire (PKSL). En étendant nos techniques développées dans deux articles récents sur la relation entre des processus de temps brownien et des EDPs du quatrième ordre, nous donnons une solution explicite à une version linéaire d'EDP d-dimensionnel de Kuramoto–Sivashinsky : u t =-1 8Δ 2 u-1 2Δu-1 2u. La solution est donnée par une fonctionnelle associée à notre PKSL.

We introduce a new imaginary-Brownian-time-Brownian-angle process, which we also call the linear-Kuramoto–Sivashinsky process (LKSP). Building on our techniques in two recent articles involving the connection of Brownian-time processes to fourth order PDEs, we give an explicit solution to a linearized Kuramoto–Sivashinsky PDE in d-dimensional space: u t =-1 8Δ 2 u-1 2Δu-1 2u. The solution is given in terms of a functional of our LKSP.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00060-8
Allouba, Hassan 1

1 Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA
@article{CRMATH_2003__336_4_309_0,
     author = {Allouba, Hassan},
     title = {A linearized {Kuramoto{\textendash}Sivashinsky} {PDE} via an {imaginary-Brownian-time-Brownian-angle} process},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {309--314},
     publisher = {Elsevier},
     volume = {336},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00060-8},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00060-8/}
}
TY  - JOUR
AU  - Allouba, Hassan
TI  - A linearized Kuramoto–Sivashinsky PDE via an imaginary-Brownian-time-Brownian-angle process
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 309
EP  - 314
VL  - 336
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00060-8/
DO  - 10.1016/S1631-073X(03)00060-8
LA  - en
ID  - CRMATH_2003__336_4_309_0
ER  - 
%0 Journal Article
%A Allouba, Hassan
%T A linearized Kuramoto–Sivashinsky PDE via an imaginary-Brownian-time-Brownian-angle process
%J Comptes Rendus. Mathématique
%D 2003
%P 309-314
%V 336
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00060-8/
%R 10.1016/S1631-073X(03)00060-8
%G en
%F CRMATH_2003__336_4_309_0
Allouba, Hassan. A linearized Kuramoto–Sivashinsky PDE via an imaginary-Brownian-time-Brownian-angle process. Comptes Rendus. Mathématique, Tome 336 (2003) no. 4, pp. 309-314. doi : 10.1016/S1631-073X(03)00060-8. http://www.numdam.org/articles/10.1016/S1631-073X(03)00060-8/

[1] Allouba, H. Brownian-time processes: the PDE connection II and the corresponding Feynman–Kac formula, Trans. Amer. Math. Soc., Volume 354 (2002) no. 11, pp. 4627-4637

[2] H. Allouba, On the connection between the Kuramoto–Sivashinsky PDE and imaginary-Brownian-time-Brownian-angle processes, 2003, in preparation

[3] Allouba, H.; Zheng, W. Brownian-time processes: the PDE connection and the half-derivative generator, Ann. Probab., Volume 29 (2001) no. 4, pp. 1780-1795

[4] Benachour, S.; Roynette, B.; Vallois, P. Explicit solutions of some fourth order partial differential equations via iterated Brownian motion, Seminar on Stochastic Analysis, Random Fields and Applications, Ascona, 1996, Progr. Probab., 45, Birkhäuser, Basel, 1999, pp. 39-61

[5] Burdzy, K. Some path properties of iterated Brownian motion, Seminar on Stochastic Processes, 1992, Birkhäuser, 1993, pp. 67-87

[6] Burdzy, K. Variation of iterated Brownian motion, Workshop and Conf. on Measure-Valued Processes, Stochastic PDEs and Interacting Particle Systems, CRM Proc. Lecture Notes, 5, 1994, pp. 35-53

[7] Changbing, H.; Temam, R. Robust control of the Kuramoto–Sivashinsky equation, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, Volume 8 (2001) no. 3, pp. 315-338

[8] Cheskidov, A.; Foias, C. On the non-homogeneous stationary Kuramoto–Sivashinsky equation, Phys. D, Volume 154 (2001) no. 1–2, pp. 1-14

[9] Foias, C.; Kukavica, I. Determining nodes for the Kuramoto–Sivashinsky equation, J. Dynamics Differential Equations, Volume 7 (1995) no. 2, pp. 365-373

[10] Foias, C.; Nicolaenko, B.; Sell, G.R.; Temam, R. Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl. (9), Volume 67 (1988) no. 3, pp. 197-226

[11] Funaki, T. Probabilistic construction of the solution of some higher order parabolic differential equation, Proc. Japan Acad. Ser. A Math. Sci., Volume 55 (1979) no. 5, pp. 176-179

[12] Hochberg, K.; Orsingher, E. Composition of stochastic processes governed by higher-order parabolic and hyperbolic equations, J. Theoret. Probab., Volume 9 (1996) no. 2, pp. 511-532

[13] Jolly, M.S.; Rosa, R.; Temam, R. Evaluating the dimension of an inertial manifold for the Kuramoto–Sivashinsky equation, Adv. Differential Equations, Volume 5 (1–3) (2000), pp. 31-66

[14] Khoshnevisan, D.; Lewis, T. Iterated Brownian motion and its intrinsic skeletal structure, Seminar on Stochastic Analysis, Random Fields and Applications, Ascona, 1996, Progr. Probab., 45, Birkhäuser, Basel, 1999, pp. 201-210

[15] Khoshnevisan, D.; Lewis, T. Stochastic calculus for Brownian motion on a Brownian fracture, Ann. Appl. Probab., Volume 9 (1999) no. 3, pp. 629-667

[16] Shi, Z. Lower limits of iterated Wiener processes, Statist. Probab. Lett., Volume 23 (1995) no. 3, pp. 259-270

[17] Shi, Z.; Yor, M. Integrability and lower limits of the local time of iterated Brownian motion, Studia Sci. Math. Hungar., Volume 33 (1997) no. 1–3, pp. 279-298

[18] Temam, R.; Wang, X. Estimates on the lowest dimension of inertial manifolds for the Kuramoto–Sivashinsky equation in the general case, Differential Integral Equations, Volume 7 (1994) no. 3–4, pp. 1095-1108

Cité par Sources :