Nous étudions les limites des profiles v des solutions de l'équation Swift–Hohenberg dans une domaine de dimension un (0,L), pour différents choix de L. Nous identifions les valeurs de L pour lesquelles v=0 et nous derivons des estimations pour la taille et la forme quand v minimise une fonctionnelle associée.
We study the limiting profiles v of solutions of the Swift–Hohenberg equation on a one-dimensional domain (0,L) for different values of L. We identify those values of L for which v=0, and discuss the size and the shape of v when it is nontrivial and a global minimiser of an associated energy functional.
Accepté le :
Publié le :
@article{CRMATH_2003__336_3_225_0, author = {Peletier, Lambertus A. and Rottsch\"afer, Vivi}, title = {Large time behaviour of solutions of the {Swift{\textendash}Hohenberg} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {225--230}, publisher = {Elsevier}, volume = {336}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00021-9}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00021-9/} }
TY - JOUR AU - Peletier, Lambertus A. AU - Rottschäfer, Vivi TI - Large time behaviour of solutions of the Swift–Hohenberg equation JO - Comptes Rendus. Mathématique PY - 2003 SP - 225 EP - 230 VL - 336 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00021-9/ DO - 10.1016/S1631-073X(03)00021-9 LA - en ID - CRMATH_2003__336_3_225_0 ER -
%0 Journal Article %A Peletier, Lambertus A. %A Rottschäfer, Vivi %T Large time behaviour of solutions of the Swift–Hohenberg equation %J Comptes Rendus. Mathématique %D 2003 %P 225-230 %V 336 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(03)00021-9/ %R 10.1016/S1631-073X(03)00021-9 %G en %F CRMATH_2003__336_3_225_0
Peletier, Lambertus A.; Rottschäfer, Vivi. Large time behaviour of solutions of the Swift–Hohenberg equation. Comptes Rendus. Mathématique, Tome 336 (2003) no. 3, pp. 225-230. doi : 10.1016/S1631-073X(03)00021-9. http://www.numdam.org/articles/10.1016/S1631-073X(03)00021-9/
[1] Recent developments in Rayleigh–Bénard convection, Ann. Rev. Fluid Mech., Volume 32 (2000), pp. 709-778
[2] Instabilities and Fronts in Extended Systems, Princeton Ser. Phys., Princeton University Press, 1990
[3] Pattern formation outside of equilibrium, Rev. Mod. Phys., Volume 65 (1993), pp. 851-1112
[4] Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs, 25, American Mathematical Society, Providence, RI, 1988
[5] Effects of additive noise at the onset of Rayleigh–Bénard convection, Phys. Rev. A, Volume 46 (1992), p. 4773
[6] Swift–Hohenberg equation for lasers, Phys. Rev. Lett., Volume 73 (1994), pp. 2978-2981
[7] Wave length selection in cellular flows, Phys. Lett. A, Volume 75 (1980), pp. 296-298
[8] L.A. Peletier, V. Rottschäfer, Pattern selection of solutions of the Swift–Hohenberg equation, to appear
[9] Spatial Patterns: Higher Order Models in Physics and Mechanics, Birkhäuser, Boston, 2001
[10] Stationary solutions of a fourth order nonlinear diffusion equation, Differential'nye Uravneniya, Volume 31 (1995), pp. 327-337 (in Russian). English translation: Differential Equations 31 (1995) 301–314
[11] Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, Volume 15 (1977), pp. 319-328
[12] Stable patterns for fourth order parabolic equations, Duke Math. J., Volume 115 (2002), pp. 513-558
Cité par Sources :