Probability Theory
Local self-similarity and the Hausdorff dimension
[Auto-similarité locale et dimension de Hausdorff]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 3, pp. 267-272.

Soit X un processus stochastique localement auto-similaire d'exposant 0<H<1 dont les trajectoires sont p.s. CHε pour tout ε>0. Alors la dimension de Hausdorff du graphe de X est p.s. 2−H.

Let X be a locally self-similar stochastic process of index 0<H<1 whose sample paths are a.s. CHε for all ε>0. Then the Hausdorff dimension of the graph of X is a.s. 2−H.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00015-3
Benassi, Albert 1 ; Cohen, Serge 2 ; Istas, Jacques 3

1 Université Blaise Pascal (Clermont-Ferrand II), LaMP, CNRS UPRESA 6016, 63177 Aubière cedex, France
2 Université Paul Sabatier, UFR MIG, Laboratoire de statistique et de probabilités, 118, route de Narbonne, 31062 Toulouse, France
3 Département IMSS, BSHM, Université Pierre Mendès-France, 38000 Grenoble, France
@article{CRMATH_2003__336_3_267_0,
     author = {Benassi, Albert and Cohen, Serge and Istas, Jacques},
     title = {Local self-similarity and the {Hausdorff} dimension},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {267--272},
     publisher = {Elsevier},
     volume = {336},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00015-3},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00015-3/}
}
TY  - JOUR
AU  - Benassi, Albert
AU  - Cohen, Serge
AU  - Istas, Jacques
TI  - Local self-similarity and the Hausdorff dimension
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 267
EP  - 272
VL  - 336
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00015-3/
DO  - 10.1016/S1631-073X(03)00015-3
LA  - en
ID  - CRMATH_2003__336_3_267_0
ER  - 
%0 Journal Article
%A Benassi, Albert
%A Cohen, Serge
%A Istas, Jacques
%T Local self-similarity and the Hausdorff dimension
%J Comptes Rendus. Mathématique
%D 2003
%P 267-272
%V 336
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00015-3/
%R 10.1016/S1631-073X(03)00015-3
%G en
%F CRMATH_2003__336_3_267_0
Benassi, Albert; Cohen, Serge; Istas, Jacques. Local self-similarity and the Hausdorff dimension. Comptes Rendus. Mathématique, Tome 336 (2003) no. 3, pp. 267-272. doi : 10.1016/S1631-073X(03)00015-3. http://www.numdam.org/articles/10.1016/S1631-073X(03)00015-3/

[1] A. Ayache, F. Roueff, Hausdorff dimension of some random continuous graphs, Preprint, 2002

[2] A. Ayache, F. Roueff, Dimension de Hausdorff locale des séries aléatoires d'ondelettes, Seminar the Journées Fractals Aléatoires, Université Paris XII, Créteil, Septembre 2001

[3] A. Ayache, F. Roueff, A Fourier formulation of the Frostman criterion for random graphs and its applications to wavelet series, Letter to the editor, Appl. Comput. Harmonic Anal., to appear

[4] Benassi, A.; Cohen, S.; Istas, J. Identifying the multifractional function of a Gaussian process, Statist. Probab. Lett., Volume 39 (1998), pp. 337-345

[5] Benassi, A.; Cohen, S.; Istas, J.; Jaffard, S. Identification of filtered white noises, Stochastics Process Appl., Volume 75 (1998), pp. 31-49

[6] Benassi, A.; Cohen, S.; Istas, J. Identification and properties of real harmonizable fractional Lévy motions, Bernoulli, Volume 8 (2002), pp. 97-115

[7] Benassi, A.; Jaffard, S.; Roux, D. Gaussian processes and pseudodifferential elliptic operators, Rev. Math. Iberoamericana, Volume 13 (1996) no. 1, pp. 19-90

[8] Falconer, K. Fractal Geometry, Lecture Notes, Monograph Series, Wiley, 1990

[9] R. Peltier, J. Lévy-Vehel, Multifractional Brownian motion: definition and preliminary results, Rapport de recherche de l'INRIA 2645, 1995

[10] Samorodnitsky, G.; Taqqu, M. Stable Non-Gaussian Random Processes, Chapmann and Hall, 1994

Cité par Sources :