On donne un exemple d'un -module sur une variété grassmannienne en caractéristique positive avec premier groupe de cohomologie non nul. On obtient ainsi un contre-exemple à la -affinité et à équivalence de Beilinson–Bernstein pour les variétés des drapeaux en caractéristique positive.
We give an example of a -module on a Grassmann variety in positive characteristic with non-vanishing first cohomology group. This is a counterexample to -affinity and the Beilinson–Bernstein equivalence for flag manifolds in positive characteristic.
Accepté le :
Publié le :
@article{CRMATH_2002__335_12_993_0, author = {Kashiwara, Masaki and Lauritzen, Niels}, title = {Local cohomology and $ \mathcal{D}$-affinity in positive characteristic}, journal = {Comptes Rendus. Math\'ematique}, pages = {993--996}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02616-X}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02616-X/} }
TY - JOUR AU - Kashiwara, Masaki AU - Lauritzen, Niels TI - Local cohomology and $ \mathcal{D}$-affinity in positive characteristic JO - Comptes Rendus. Mathématique PY - 2002 SP - 993 EP - 996 VL - 335 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02616-X/ DO - 10.1016/S1631-073X(02)02616-X LA - en ID - CRMATH_2002__335_12_993_0 ER -
%0 Journal Article %A Kashiwara, Masaki %A Lauritzen, Niels %T Local cohomology and $ \mathcal{D}$-affinity in positive characteristic %J Comptes Rendus. Mathématique %D 2002 %P 993-996 %V 335 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02616-X/ %R 10.1016/S1631-073X(02)02616-X %G en %F CRMATH_2002__335_12_993_0
Kashiwara, Masaki; Lauritzen, Niels. Local cohomology and $ \mathcal{D}$-affinity in positive characteristic. Comptes Rendus. Mathématique, Tome 335 (2002) no. 12, pp. 993-996. doi : 10.1016/S1631-073X(02)02616-X. http://www.numdam.org/articles/10.1016/S1631-073X(02)02616-X/
[1] Localisation de -modules, C. R. Acad. Sci. Paris, Volume 292 (1981), pp. 15-18
[2] R. Bezrukavnikov, I. Mirković, D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, Preprint, | arXiv
[3] Dimension projective finie et cohomologie locale, Inst. Hautes Études Sci. Publ. Math., Volume 42 (1973), pp. 47-119
[4] Über Differentialoperatoren und -Moduln in positiver Characteristik, Manuscripta Math., Volume 58 (1987), pp. 385-415
[5] On the vanishing of local cohomology modules, Invent. Math., Volume 102 (1990), pp. 73-95
[6] The Grothendieck–Cousin complex of an induced representation, Adv. Math., Volume 29 (1978), pp. 310-396
Cité par Sources :