Nonlinear elliptic equations with critical Sobolev exponent in nearly starshaped domains
[Équations elliptiques non linéaire avec non-linéarité critique en ouverts presque étoilés]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 12, pp. 1029-1032.

On montre que, si Ω satisfait certaines conditions, le problème (1) ci-dessous, pour ε>0 suffisamment petit et k grand, admet des solutions qui pour ε→0 se concentrent et explosent exactement en k points ; les points de concentration s'approchent du bord de Ω quand k→∞ ; le nombre de solutions est arbitrairement grand pourvu que ε soit suffisamment petit. Parmi les ouverts bornés Ω qui satisfont ces conditions il y en a aussi de contractibles, qui peuvent même être arbitrairement proches de ouverts étoilés.

Under suitable assumptions on Ω, we show that, for ε>0 small and k large enough, problem (1) below has solutions which concentrate and blow-up as ε→0 at exactly k points; the blowing-up points approach Ω as k→∞; the number of solutions tends to infinity as ε→0. These assumptions allow Ω to be contractible and even arbitrarily close to starshaped domains.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02614-6
Molle, Riccardo 1 ; Passaseo, Donato 2

1 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 1, 00133 Roma, Italy
2 Dipartimento di Matematica “E. De Giorgi”, Università di Lecce, P.O. Box 193, 73100 Lecce, Italy
@article{CRMATH_2002__335_12_1029_0,
     author = {Molle, Riccardo and Passaseo, Donato},
     title = {Nonlinear elliptic equations with critical {Sobolev} exponent in nearly starshaped domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1029--1032},
     publisher = {Elsevier},
     volume = {335},
     number = {12},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02614-6},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02614-6/}
}
TY  - JOUR
AU  - Molle, Riccardo
AU  - Passaseo, Donato
TI  - Nonlinear elliptic equations with critical Sobolev exponent in nearly starshaped domains
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 1029
EP  - 1032
VL  - 335
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02614-6/
DO  - 10.1016/S1631-073X(02)02614-6
LA  - en
ID  - CRMATH_2002__335_12_1029_0
ER  - 
%0 Journal Article
%A Molle, Riccardo
%A Passaseo, Donato
%T Nonlinear elliptic equations with critical Sobolev exponent in nearly starshaped domains
%J Comptes Rendus. Mathématique
%D 2002
%P 1029-1032
%V 335
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02614-6/
%R 10.1016/S1631-073X(02)02614-6
%G en
%F CRMATH_2002__335_12_1029_0
Molle, Riccardo; Passaseo, Donato. Nonlinear elliptic equations with critical Sobolev exponent in nearly starshaped domains. Comptes Rendus. Mathématique, Tome 335 (2002) no. 12, pp. 1029-1032. doi : 10.1016/S1631-073X(02)02614-6. http://www.numdam.org/articles/10.1016/S1631-073X(02)02614-6/

[1] Bahri, A.; Coron, J.M. On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Volume 41 (1988), pp. 253-294

[2] Bahri, A.; Li, Y.; Rey, O. On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var., Volume 3 (1995) no. 1, pp. 67-93

[3] Brézis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983) no. 4, pp. 437-477

[4] Brézis, H.; Peletier, L.A. Asymptotics for elliptic equations involving critical growth (Colombini; Modica; Spagnolo, eds.), P.D.E. and the Calculus of Variations, Birkhäuser, Basel, 1989, pp. 149-192

[5] Dancer, E.N. A note on an equation with critical exponent, Bull. London Math. Soc., Volume 20 (1988) no. 6, pp. 600-602

[6] Dancer, E.N.; Zhang, K. Uniqueness of solutions for some elliptic equations and systems in nearly star-shaped domains, Nonlinear Anal., Volume 41 (2000) no. 5–6, pp. 745-761

[7] Ding, W.Y. Positive solutions of Δu+u(n+2)/(n−2)=0 on contractible domains, J. Partial Differential Equations, Volume 2 (1989) no. 4, pp. 83-88

[8] Han, Z.C. Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991) no. 2, pp. 159-174

[9] R. Molle, D. Passaseo, Concentrating solutions of slightly supercritical elliptic equations in symmetric domains, to appear

[10] R. Molle, D. Passaseo, to appear

[11] R. Molle, A. Pistoia, Concentration phenomena in elliptic problems with critical and supercritical growth, Adv. Differential Equations, to appear

[12] Passaseo, D. Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., Volume 65 (1989) no. 2, pp. 147-165

[13] Passaseo, D. Multiplicity of positive solutions for the equation Δu+λu+u 2 * -1 =0 in noncontractible domains, Topol. Methods Nonlinear Anal., Volume 2 (1993) no. 2, pp. 343-366

[14] Passaseo, D. Some sufficient conditions for the existence of positive solutions to the equation -Δu+a(x)u=u 2 * -1 in bounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 13 (1996) no. 2, pp. 185-227

[15] Pohožaev, S.I. On the eigenfunctions of the equation Δu+λf(u)=0, Soviet Math. Dokl., Volume 6 (1965), pp. 1408-1411

[16] Rey, O. A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal., Volume 13 (1989) no. 10, pp. 1241-1249

[17] Rey, O. The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990) no. 1, pp. 1-52

Cité par Sources :