Sur un modèle de Saint-Venant visqueux et sa limite quasi-géostrophique
Comptes Rendus. Mathématique, Tome 335 (2002) no. 12, pp. 1079-1084.

On considère un modèle de Saint-Venant avec viscosité et terme de friction en dimension deux, pour lequel on obtient un résultat d'existence globale de solutions faibles. On montre également la convergence de ces solutions vers la solution forte globale des équations quasi-géostrophiques visqueuses avec terme de surface libre pour des données bien préparées.

We consider a two dimensional viscous shallow water model with friction term. The existence of global weak solutions is obtained and convergence to the strong solution of the viscous quasi-geostrophic equation with free surface term is proven in the well prepared case.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02610-9
Bresch, Didier 1 ; Desjardins, Benoı̂t 2

1 Laboratoire de mathématiques appliquées (UMR 6620), 24, avenue des Landais, 63177 Aubière cedex, France
2 CEA/DIF, BP 12, 91680 Bruyères le Châtel, France
@article{CRMATH_2002__335_12_1079_0,
     author = {Bresch, Didier and Desjardins, Beno{\i}̂t},
     title = {Sur un mod\`ele de {Saint-Venant} visqueux et sa limite quasi-g\'eostrophique},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1079--1084},
     publisher = {Elsevier},
     volume = {335},
     number = {12},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02610-9},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02610-9/}
}
TY  - JOUR
AU  - Bresch, Didier
AU  - Desjardins, Benoı̂t
TI  - Sur un modèle de Saint-Venant visqueux et sa limite quasi-géostrophique
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 1079
EP  - 1084
VL  - 335
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02610-9/
DO  - 10.1016/S1631-073X(02)02610-9
LA  - fr
ID  - CRMATH_2002__335_12_1079_0
ER  - 
%0 Journal Article
%A Bresch, Didier
%A Desjardins, Benoı̂t
%T Sur un modèle de Saint-Venant visqueux et sa limite quasi-géostrophique
%J Comptes Rendus. Mathématique
%D 2002
%P 1079-1084
%V 335
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02610-9/
%R 10.1016/S1631-073X(02)02610-9
%G fr
%F CRMATH_2002__335_12_1079_0
Bresch, Didier; Desjardins, Benoı̂t. Sur un modèle de Saint-Venant visqueux et sa limite quasi-géostrophique. Comptes Rendus. Mathématique, Tome 335 (2002) no. 12, pp. 1079-1084. doi : 10.1016/S1631-073X(02)02610-9. http://www.numdam.org/articles/10.1016/S1631-073X(02)02610-9/

[1] Babin, A.; Mahalov, A.; Nicolaenko, B. Global splitting in rotating shallow-water equations, European J. Mech. B Fluids, Volume 16 (1997), pp. 725-754

[2] D. Bresch, B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys. (2002), soumis

[3] D. Bresch, B. Desjardins, C.K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations (2002), à paraı̂tre

[4] Colin, T.; Fabrie, P. Rotating fluid at high Rossby number driven by a surface stress: existence and convergence, Adv. Differential Equations, Volume 2 (1997) no. 5, pp. 715-751

[5] B. Desjardins, J.-Y. Chemin, I. Gallagher, E. Grenier (2001), livre en préparation

[6] Embid, P.F.; Majda, A. Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers, Geosphys. Astrophys. Fluid Dynamics, Volume 87 (1998), pp. 1-50

[7] Embid, P.F.; Majda, A. Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Differential Equations, Volume 21 (1996), pp. 619-658

[8] Gent, P. The energetically consistent shallow water equations, J. Atmos. Sci, Volume 50 (1993), pp. 1323-1325

[9] Gerbeau, F.; Perthame, B. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical results, Discrete Continuous Dynamical Systems Series B, Volume 1 (2001) no. 1, pp. 89-102

[10] Grenier, E.; Masmoudi, N. Ekman layers of rotating fluids, the case of well prepared initial data, Comm. Partial Differential Equations, Volume 22 (1997) no. 5–6, pp. 953-975

[11] Lions, P.-L. Mathematical Topics in Fluid Dynamics, Vol. 2. Compressible Models, Oxford University Press, 1998

[12] Lions, J.-L.; Temam, R.; Wang, S. On the equations of the large scale Ocean, Nonlinearity, Volume 5 (1992), pp. 1007-1053

[13] Masmoudi, N. Ekman layers of rotating fluids: the case of general initial data, Comm. Pure Appl. Math, Volume 53 (2000) no. 4, pp. 432-483

[14] Orenga, P. Un théorème d'existence de solutions d'un problème de shallow water, Arch. Rational Mech. Anal, Volume 130 (1995) no. 2, pp. 183-204

[15] Pedlosky, J. Geophysical Fluid Dynamics, Springer-Verlag, 1987

[16] Schochet, S. Singular limits in bounded domains for quasilinear symmetric hyperbolic systems having a vorticity equation, J. Differential Equations, Volume 68 (1987) no. 3, pp. 400-428

[17] Sundbye, L. Global existence for the Dirichlet problem for the viscous shallow water equations, J. Math. Anal. Appl, Volume 202 (1996) no. 1, pp. 236-258

Cité par Sources :