Soit S une surface de qui divise l'espace en deux composantes connectées D1 and D2. Soit une fonction à valeurs réeles, suppf⊂D1. Considérons
Let S be a surface in which divides the space into two connected components D1 and D2. Let be some real-valued compactly supported function with suppf⊂D1. Consider
Accepté le :
Publié le :
@article{CRMATH_2002__335_12_1033_0, author = {Ramm, Alexander G.}, title = {Injectivity of the spherical means operator}, journal = {Comptes Rendus. Math\'ematique}, pages = {1033--1038}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02608-0}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02608-0/} }
TY - JOUR AU - Ramm, Alexander G. TI - Injectivity of the spherical means operator JO - Comptes Rendus. Mathématique PY - 2002 SP - 1033 EP - 1038 VL - 335 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02608-0/ DO - 10.1016/S1631-073X(02)02608-0 LA - en ID - CRMATH_2002__335_12_1033_0 ER -
Ramm, Alexander G. Injectivity of the spherical means operator. Comptes Rendus. Mathématique, Tome 335 (2002) no. 12, pp. 1033-1038. doi : 10.1016/S1631-073X(02)02608-0. http://www.numdam.org/articles/10.1016/S1631-073X(02)02608-0/
[1] Injectivity of the spherical mean operator and related problems, Pitman Res. Notes Math. Ser., 347, Longman, Harlow, 1996, pp. 12-36
[2] On the determination of the function from spherical averages, SIAM J. Math. Anal., Volume 19 (1988), pp. 214-232
[3] Methods of Mathematical Physics, Interscience, New York, 1962
[4] Ill-Posed Problems of Mathematical Physics and Analysis, American Mathematical Society, Providence, RI, 1986
[5] Methods of Theoretical Physics, McGraw-Hill, New York, 1953
[6] Scattering by Obstacles, Reidel, Dordrecht, 1986 (pp. 1–442)
[7] Multidimensional Inverse Scattering Problems, Longman Scientific & Wiley, New York, 1992 (pp. 1–385; Expanded Russian edition: Mir, Moscow, 1994, pp. 1–496)
[8] Spectral properties of the Schrödinger operator in some domains with infinite boundaries, Soviet Math. Dokl., Volume 152 (1963), pp. 282-285
[9] Spectral properties of the Schrödinger operator in some infinite domains, Mat. Sb., Volume 66 (1965), pp. 321-343
Cité par Sources :