Nous montrons que toute structure de Poisson analytique (resp., formelle), qui s'annule en un point et dont la partie linéaire correspond à l'algèbre des transformations affines sur , est localement analytiquement (resp., formellement) linéarisable.
We show that , the Lie algebra of affine transformations of is formally and analytically nondegenerate in the sense of A. Weinstein. This means that every analytic (resp., formal) Poisson structure vanishing at a point with a linear part corresponding to is locally analytically (resp., formally) linearizable.
Accepté le :
Publié le :
@article{CRMATH_2002__335_12_1043_0, author = {Dufour, Jean-Paul and Zung, Nguyen Tien}, title = {Nondegeneracy of the {Lie} algebra $ \mathfrak{aff}\mathrm{(n)}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1043--1046}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02599-2}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02599-2/} }
TY - JOUR AU - Dufour, Jean-Paul AU - Zung, Nguyen Tien TI - Nondegeneracy of the Lie algebra $ \mathfrak{aff}\mathrm{(n)}$ JO - Comptes Rendus. Mathématique PY - 2002 SP - 1043 EP - 1046 VL - 335 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02599-2/ DO - 10.1016/S1631-073X(02)02599-2 LA - en ID - CRMATH_2002__335_12_1043_0 ER -
%0 Journal Article %A Dufour, Jean-Paul %A Zung, Nguyen Tien %T Nondegeneracy of the Lie algebra $ \mathfrak{aff}\mathrm{(n)}$ %J Comptes Rendus. Mathématique %D 2002 %P 1043-1046 %V 335 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02599-2/ %R 10.1016/S1631-073X(02)02599-2 %G en %F CRMATH_2002__335_12_1043_0
Dufour, Jean-Paul; Zung, Nguyen Tien. Nondegeneracy of the Lie algebra $ \mathfrak{aff}\mathrm{(n)}$. Comptes Rendus. Mathématique, Tome 335 (2002) no. 12, pp. 1043-1046. doi : 10.1016/S1631-073X(02)02599-2. http://www.numdam.org/articles/10.1016/S1631-073X(02)02599-2/
[1] Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988
[2] Normal forms for analytic Poisson structures, Ann. of Math. (2), Volume 119 (1984) no. 3, pp. 577-601
[3] Normal forms for smooth Poisson structures, Ann. of Math. (2), Volume 121 (1985) no. 3, pp. 565-593
[4] Linéarisation de certaines structures de Poisson, J. Differential Geom., Volume 32 (1990) no. 2, pp. 415-428
[5] Une nouvelle famille d'algèbres de Lie non dégénérées, Indag. Math. (N.S.), Volume 6 (1995) no. 1, pp. 67-82
[6] J.-C. Molinier, Linéarisation de structures de Poisson, Thèse, Montpellier, 1993
[7] Levi decomposition of smooth Poisson structures, Preprint, 2002 | arXiv
[8] Normalisation formelle de structures de Poisson, C. R. Acad. Sci. Paris, Série I, Volume 324 (1997) no. 5, pp. 531-536
[9] The local structure of Poisson manifolds, J. Differential Geom., Volume 18 (1983) no. 3, pp. 523-557
[10] Levi decomposition of analytic Poisson structures and Lie algebroids, Preprint, 2002 | arXiv
Cité par Sources :