Invertibility of functional Galois connections
[Inversibilité des correspondances de Galois fonctionnelles]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 883-888.

On considère des équations de la forme Bf=g, où B est une correspondance de Galois entre des treillis de fonctions, ce qui inclut le cas où B est la transformation de Fenchel, ou plus généralement une conjugaison de Moreau. Nous caractérisons l'existence et l'unicité d'une solution f, en termes de sous-différentiels généralisés, et étendons ainsi le théorème de couverture de K. Zimmermann pour les équations linéaires max-plus.

We consider equations of the form Bf=g, where B is a Galois connection between lattices of functions. This includes the case where B is the Fenchel transform, or more generally a Moreau conjugacy. We characterize the existence and uniqueness of a solution f in terms of generalized subdifferentials, which extends K. Zimmermann's covering theorem for max-plus linear equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02594-3
Akian, Marianne 1 ; Gaubert, Stéphane 1 ; Kolokoltsov, Vassili 2, 3

1 INRIA, Domaine de Voluceau, BP 105, 78153 Le Chesnay cedex, France
2 Dep. of Computing and Mathematics, Nottingham Trent University, Burton Street, Nottingham NG1 4BU, UK
3 Institute for Information Transmission Problems of Russian Academy of Science, Moscow, Russia
@article{CRMATH_2002__335_11_883_0,
     author = {Akian, Marianne and Gaubert, St\'ephane and Kolokoltsov, Vassili},
     title = {Invertibility of functional {Galois} connections},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {883--888},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02594-3},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02594-3/}
}
TY  - JOUR
AU  - Akian, Marianne
AU  - Gaubert, Stéphane
AU  - Kolokoltsov, Vassili
TI  - Invertibility of functional Galois connections
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 883
EP  - 888
VL  - 335
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02594-3/
DO  - 10.1016/S1631-073X(02)02594-3
LA  - en
ID  - CRMATH_2002__335_11_883_0
ER  - 
%0 Journal Article
%A Akian, Marianne
%A Gaubert, Stéphane
%A Kolokoltsov, Vassili
%T Invertibility of functional Galois connections
%J Comptes Rendus. Mathématique
%D 2002
%P 883-888
%V 335
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02594-3/
%R 10.1016/S1631-073X(02)02594-3
%G en
%F CRMATH_2002__335_11_883_0
Akian, Marianne; Gaubert, Stéphane; Kolokoltsov, Vassili. Invertibility of functional Galois connections. Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 883-888. doi : 10.1016/S1631-073X(02)02594-3. http://www.numdam.org/articles/10.1016/S1631-073X(02)02594-3/

[1] Akian, M. Densities of idempotent measures and large deviations, Trans. Amer. Math. Soc., Volume 351 (1999) no. 11, pp. 4515-4543

[2] M. Akian, S. Gaubert, V. Kolokoltsov, Invertibility of functional Galois connections and large deviations, 2002, in preparation

[3] Baccelli, F.; Cohen, G.; Olsder, G.J.; Quadrat, J.P. Synchronization and Linearity: An Algebra for Discrete Events Systems, Wiley, New York, 1992

[4] Birkhoff, G. Lattice Theory, Colloq. Publ., 25, American Mathematical Society, Providence, 1995

[5] Butkovič, P. Strong regularity of matrices – a survey of results, Discrete Appl. Math., Volume 48 (1994), pp. 45-68

[6] Butkovič, P. Simple image set of (max, +) linear mappings, Discrete Appl. Math., Volume 105 (2000) no. 1–3, pp. 73-86

[7] Cuninghame-Green, R.A. Minimax Algebra, Lecture Notes in Econom. Math. Systems, 166, Springer, 1979

[8] Dembo, A.; Zeitouni, O. Large Deviations Techniques and Applications, Jones and Barlett, Boston, MA, 1993

[9] Gondran, M.; Minoux, M. Graphes, dioı̈des et semi-anneaux, TEC & DOC, Paris, 2001

[10] V. Kolokoltsov, On linear, additive, and homogeneous operators, 1992, in [12]

[11] Kolokoltsov, V.; Maslov, V. Idempotent Analysis and Applications, Kluwer Academic, 1997

[12] Idempotent Analysis (Maslov, V.; Samborskiı̆, S., eds.), Adv. Soviet Math., 13, American Mathematical Society, RI, 1992

[13] Neubrunn, T. Quasi-continuity, Real Anal. Exchange, Volume 14 (1988/89) no. 2, pp. 259-306

[14] Rachev, S.T.; Rüschendorf, L. Mass Transportation Problems, Vol. I: Theory, Springer, 1998

[15] Rockafellar, R.T. Convex Analysis, Princeton University Press, Princeton, NJ, 1970

[16] Rockafellar, R.T.; Wets, R.J.-B. Variational Analysis, Springer-Verlag, Berlin, 1998

[17] Singer, I. Abstract Convex Analysis, Wiley, New York, 1997

[18] Singer, I. Further applications of the additive min-type coupling function, Optimization, Volume 51 (2002), pp. 471-485

[19] K. Zimmermann, Extremálnı́ Algebra, Ekonomický ùstav C̆SAV, Praha, 1976 (in Czech)

Cité par Sources :