Soient M une variété Riemannienne compacte, E un fibré vectoriel Riemannien sur M et Σ le sous-fibré unitaire de E. On détermine des plongements de Σ dans E dont on prescrit des courbures de Gauss de divers types.
Let M be a compact Riemannian manifold, E a Riemannian vector bundle on M and Σ the sphere subbundle of E. We look for embeddings of Σ into E admitting prescribed Gaussian curvatures of various types.
Accepté le :
Publié le :
@article{CRMATH_2002__335_11_927_0, author = {Hanani, Abdellah}, title = {Hypersurfaces d'un fibr\'e vectoriel {Riemannien} \`a courbure de {Gauss} prescrite}, journal = {Comptes Rendus. Math\'ematique}, pages = {927--930}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02588-8}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02588-8/} }
TY - JOUR AU - Hanani, Abdellah TI - Hypersurfaces d'un fibré vectoriel Riemannien à courbure de Gauss prescrite JO - Comptes Rendus. Mathématique PY - 2002 SP - 927 EP - 930 VL - 335 IS - 11 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02588-8/ DO - 10.1016/S1631-073X(02)02588-8 LA - fr ID - CRMATH_2002__335_11_927_0 ER -
%0 Journal Article %A Hanani, Abdellah %T Hypersurfaces d'un fibré vectoriel Riemannien à courbure de Gauss prescrite %J Comptes Rendus. Mathématique %D 2002 %P 927-930 %V 335 %N 11 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02588-8/ %R 10.1016/S1631-073X(02)02588-8 %G fr %F CRMATH_2002__335_11_927_0
Hanani, Abdellah. Hypersurfaces d'un fibré vectoriel Riemannien à courbure de Gauss prescrite. Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 927-930. doi : 10.1016/S1631-073X(02)02588-8. http://www.numdam.org/articles/10.1016/S1631-073X(02)02588-8/
[1] Nonlinear second order elliptic equations IV. Starshaped compact Weingarten hypersurfaces (Ohya, Y.; Kasahara, K.; Shimakura, N., eds.), Current Topics in Partial Differential Equations, Kinokunize, Tokyo, 1986, pp. 1-26
[2] Plongements radiaux à courbure de Gauss positive prescrite, Ann. Sci. École Norm. Sup., Volume 18 (1985), pp. 635-649
[3] Local inversion of elliptic problems on compact manifolds, Math. Japon., Volume 35 (1990), pp. 679-692
[4] The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., Volume 7 (1982), pp. 65-222
[5] Degree of mapping in convex linear topological spaces, Amer. J. Math., Volume 73 (1951), pp. 497-511
[6] Hypersurfaces in with prescribed Gaussian curvature and related equations of Monge–Ampère type, Comm. Partial Differential Equations, Volume 9 (1984), pp. 807-838
[7] Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973
Cité par Sources :