The Rayleigh–Stokes problem for an edge in an Oldroyd-B fluid
[Le problème Rayleigh–Stokes pour un dièdre dans un fluide Oldroyd-B]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 979-984.

Les champs de vitesses correspondant à un fluide de type Oldroyd-B qui exécute un mouvement linéaire dans un dièdre infini sont déterminés pour toutes les valeurs des temps de relaxation et de retard. La solution bien connue pour le fluide de Navier–Stokes, les solutions correspondant à un fluide de Maxwell et à un fluide de grade deux apparaissent comme un cas limite de nos solutions.

The velocity fields corresponding to an incompressible fluid of Oldroyd-B type subject to a linear flow within an infinite edge are determined for all values of the relaxation and retardation times. The well known solution for a Navier–Stokes fluid, as well as those corresponding to a Maxwell fluid and a second grade one, appears as a limiting case of our solutions.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02577-3
Fetecau, Constantin 1

1 Department of Mathematics, Technical University of Iasi, R-6600 Iasi, Romania
@article{CRMATH_2002__335_11_979_0,
     author = {Fetecau, Constantin},
     title = {The {Rayleigh{\textendash}Stokes} problem for an edge in an {Oldroyd-B} fluid},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {979--984},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02577-3},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02577-3/}
}
TY  - JOUR
AU  - Fetecau, Constantin
TI  - The Rayleigh–Stokes problem for an edge in an Oldroyd-B fluid
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 979
EP  - 984
VL  - 335
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02577-3/
DO  - 10.1016/S1631-073X(02)02577-3
LA  - en
ID  - CRMATH_2002__335_11_979_0
ER  - 
%0 Journal Article
%A Fetecau, Constantin
%T The Rayleigh–Stokes problem for an edge in an Oldroyd-B fluid
%J Comptes Rendus. Mathématique
%D 2002
%P 979-984
%V 335
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02577-3/
%R 10.1016/S1631-073X(02)02577-3
%G en
%F CRMATH_2002__335_11_979_0
Fetecau, Constantin. The Rayleigh–Stokes problem for an edge in an Oldroyd-B fluid. Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 979-984. doi : 10.1016/S1631-073X(02)02577-3. http://www.numdam.org/articles/10.1016/S1631-073X(02)02577-3/

[1] Fetecau, C.; Zierep, J. On a class of exact solutions of the equations of motion of a second grade fluid, Acta Mech, Volume 150 (2001), pp. 135-138

[2] C. Fetecau, J. Zierep, The Rayleigh–Stokes problem for a Maxwell fluid, ZAMP, in press

[3] Guillopè, C.; Saut, J.C. Global existence and one-dimensional non-linear stability of shearing motions of viscoelastic fluids of Oldroyd type, RAIRO Modél. Math. Anal. Numér, Volume 24 (1990), pp. 369-381

[4] Oldroyd, J.G. On the formulation of rheological equations of state, Proc. Roy. Soc. London Ser. A, Volume 200 (1950), pp. 53-65

[5] Rajagopal, K.R. Mechanics of non-Newtonian fluids, Recent Developments in Theoretical Fluids Mechanics, Pitman Res. Notes Math, 291, Longman, 1993, pp. 129-162

[6] Rajagopal, K.R. On boundary conditions for fluids of the differential type, Navier–Stokes Equations and Related Nonlinear Problems, Plenum Press, New York, 1995, pp. 273-278

[7] Rajagopal, K.R.; Kaloni, P.N. Some remarks on boundary conditions for flows of fluids of the differential type, Cont. Mech. and its Applications, Hemisphere Press, New York, 1989, pp. 935-942

[8] Sneddon, I.N. Fourier Transforms, McGraw-Hill, New York, 1951

[9] Srivastava, P.N. Non steady helical flow of a visco-elastic liquid, Arch. Mech. Stos, Volume 18 (1966) no. 2, pp. 145-150

[10] Zierep, J. Das Rayleigh–Stokes-Problem für die Ecke, Acta Mech, Volume 34 (1979), pp. 161-165

Cité par Sources :

Dedicated to the memory of Caius Iacob and his Professor Henri Villat.