Sur , n⩾1 et n≠2, on établit l'existence de meilleurs constantes dans les inégalités de Sobolev pour les dérivées fractionelles d'ordre supérieur. Soit s un reel positif. Pour n>2s et toute fonction vérifie l'inégalité suivante
On , n⩾1 and n≠2, we prove the existence of a sharp constant for Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. For n>2s and any function satisfies
Publié le :
@article{CRMATH_2002__335_10_801_0, author = {Cotsiolis, Athanase and Tavoularis, Nikolaos Con.}, title = {Sharp {Sobolev} type inequalities for higher fractional derivatives}, journal = {Comptes Rendus. Math\'ematique}, pages = {801--804}, publisher = {Elsevier}, volume = {335}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02576-1}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02576-1/} }
TY - JOUR AU - Cotsiolis, Athanase AU - Tavoularis, Nikolaos Con. TI - Sharp Sobolev type inequalities for higher fractional derivatives JO - Comptes Rendus. Mathématique PY - 2002 SP - 801 EP - 804 VL - 335 IS - 10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02576-1/ DO - 10.1016/S1631-073X(02)02576-1 LA - en ID - CRMATH_2002__335_10_801_0 ER -
%0 Journal Article %A Cotsiolis, Athanase %A Tavoularis, Nikolaos Con. %T Sharp Sobolev type inequalities for higher fractional derivatives %J Comptes Rendus. Mathématique %D 2002 %P 801-804 %V 335 %N 10 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02576-1/ %R 10.1016/S1631-073X(02)02576-1 %G en %F CRMATH_2002__335_10_801_0
Cotsiolis, Athanase; Tavoularis, Nikolaos Con. Sharp Sobolev type inequalities for higher fractional derivatives. Comptes Rendus. Mathématique, Tome 335 (2002) no. 10, pp. 801-804. doi : 10.1016/S1631-073X(02)02576-1. http://www.numdam.org/articles/10.1016/S1631-073X(02)02576-1/
[1] Some Nonlinear Problems in Riemannian Geometry, Springer, 1998
[2] Problèmes isopèrimétriques et espaces de Sobolev, J. Differential Geom., Volume 11 (1976), pp. 573-598
[3] A. Cotsiolis, N. Tavoularis, Best constant for the embedding of the space into and applications, in preparation
[4] Paneitz type operators and applications, Duke Math. J., Volume 104 (2000) no. 1, pp. 129-169
[5] Analysis, American Mathematical Society, 2001
[6] Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math., Volume 118 (1983), pp. 349-374
[7] Best constants in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372
[8] Best constant for the embedding of the space into , Differential Integral Equations, Volume 2 (1993) no. 2, pp. 259-270
Cité par Sources :