Wavelet packets with uniform time-frequency localization
[Paquets d'ondelettes avec localisation temps-fréquentielle uniforme]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 10, pp. 793-796.

Nous construisons des paquets d'ondelettes de base uniformément bien localisés en temps et en fréquences. Les bases orthonormées correspondantes de paquets d'ondelettes sons parametrisées par des partitions dyadiques obeissants une condition de variation locale.

We construct basic wavelet packets with uniformly bounded localization in both time and frequency. The corresponding orthonormal bases of wavelet packets are parametrized by dyadic segmentations obeying a local variation condition.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02570-0
Villemoes, Lars F. 1

1 Coding Technologies, Döbelnsgatan 64, 11352 Stockholm, Sweden
@article{CRMATH_2002__335_10_793_0,
     author = {Villemoes, Lars F.},
     title = {Wavelet packets with uniform time-frequency localization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {793--796},
     publisher = {Elsevier},
     volume = {335},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02570-0},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02570-0/}
}
TY  - JOUR
AU  - Villemoes, Lars F.
TI  - Wavelet packets with uniform time-frequency localization
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 793
EP  - 796
VL  - 335
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02570-0/
DO  - 10.1016/S1631-073X(02)02570-0
LA  - en
ID  - CRMATH_2002__335_10_793_0
ER  - 
%0 Journal Article
%A Villemoes, Lars F.
%T Wavelet packets with uniform time-frequency localization
%J Comptes Rendus. Mathématique
%D 2002
%P 793-796
%V 335
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02570-0/
%R 10.1016/S1631-073X(02)02570-0
%G en
%F CRMATH_2002__335_10_793_0
Villemoes, Lars F. Wavelet packets with uniform time-frequency localization. Comptes Rendus. Mathématique, Tome 335 (2002) no. 10, pp. 793-796. doi : 10.1016/S1631-073X(02)02570-0. http://www.numdam.org/articles/10.1016/S1631-073X(02)02570-0/

[1] L. Borup, M. Nielsen, Approximation with brushlet systems, J. Approx. Theory, to appear

[2] Cohen, A.; Séré, E. Time-frequency localization with non-stationary wavelet packets (Smith, M.T.; Akansu, A., eds.), Subband and Wavelet Transforms — Theory and Design, Kluwer Academic, 1996, pp. 189-211

[3] Coifman, R.R.; Meyer, Y.; Wickerhauser, V. Size properties of wavelet-packets, Wavelets and Their Applications, Jones and Bartlett, Boston, MA, 1992, pp. 453-470

[4] Daubechies, I.; Jaffard, S.; Journé, J.-L. A simple Wilson orthonormal basis with exponential decay, SIAM J. Math. Anal, Volume 22 (1991), pp. 554-573

[5] Goodman, T.N.T.; Lee, S.L.; Tang, W.S. Wavelets in wandering subspaces, Trans. Amer. Math. Soc, Volume 338 (1993), pp. 639-654

[6] Hess-Nielsen, N. Control of frequency spreading of wavelet packets, Appl. Comput. Harmon. Anal, Volume 1 (1994) no. 2, pp. 157-168

[7] Laeng, E. Une base orthonormale de L2() dont les éléments sont bien localisés dans l'espace de phase et leurs supports adaptés à toute partition symétrique de l'espace des fréquences, C. R. Acad. Sci. Paris, Série I, Volume 31 (1990) no. 11, pp. 677-680

[8] Meyer, Y. Wavelets: Algorithms and Applications, SIAM, 1993

[9] Meyer, F.G.; Coifman, R.R. Brushlets: a tool for directional image analysis and image compression, Appl. Comput. Harmon. Anal, Volume 4 (1997), pp. 147-187

[10] Nielsen, M.; Zhou, D.-X. Mean size of wavelet packets, Appl. Comput. Harmon. Anal, Volume 13 (2002), pp. 22-34

[11] Séré, E. Localisation fréquentielle des paquets d'ondelettes, Rev. Mat. Iberoamericana, Volume 11 (1995) no. 2, pp. 334-354

[12] Villemoes, L.F. Adapted bases of time-frequency local cosines, Appl. Comput. Harmon. Anal, Volume 10 (2001), pp. 139-162

Cité par Sources :