Nous étudions une class d'opérateurs différentiels radiaux conduisant à une classification naturelle des espaces de Besov diagonaux dans la boule unité de
A class of radial differential operators are investigated yielding a natural classification of diagonal Besov spaces on the unit ball of
Accepté le :
Publié le :
@article{CRMATH_2002__335_9_729_0, author = {Kaptano\u{g}lu, H.Turgay}, title = {Besov spaces and {Bergman} projections on the ball}, journal = {Comptes Rendus. Math\'ematique}, pages = {729--732}, publisher = {Elsevier}, volume = {335}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02556-6}, language = {en}, url = {https://www.numdam.org/articles/10.1016/S1631-073X(02)02556-6/} }
TY - JOUR AU - Kaptanoğlu, H.Turgay TI - Besov spaces and Bergman projections on the ball JO - Comptes Rendus. Mathématique PY - 2002 SP - 729 EP - 732 VL - 335 IS - 9 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S1631-073X(02)02556-6/ DO - 10.1016/S1631-073X(02)02556-6 LA - en ID - CRMATH_2002__335_9_729_0 ER -
%0 Journal Article %A Kaptanoğlu, H.Turgay %T Besov spaces and Bergman projections on the ball %J Comptes Rendus. Mathématique %D 2002 %P 729-732 %V 335 %N 9 %I Elsevier %U https://www.numdam.org/articles/10.1016/S1631-073X(02)02556-6/ %R 10.1016/S1631-073X(02)02556-6 %G en %F CRMATH_2002__335_9_729_0
Kaptanoğlu, H.Turgay. Besov spaces and Bergman projections on the ball. Comptes Rendus. Mathématique, Tome 335 (2002) no. 9, pp. 729-732. doi : 10.1016/S1631-073X(02)02556-6. https://www.numdam.org/articles/10.1016/S1631-073X(02)02556-6/
[1] Complete Nevanlinna–Pick kernels, J. Funct. Anal., Volume 175 (2000), pp. 111-124
[2] Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna–Pick reproducing kernel, C. R. Acad. Sci. Paris, Série I, Volume 333 (2001), pp. 285-290
[3] Some-finite dimensional backward-shift-invariant subspaces in the ball and a related interpolation problem, Integral Equations Operator Theory, Volume 42 (2002), pp. 1-21
[4] D. Alpay, H.T. Kaptanoğlu, Gleason's problem and homogeneous interpolation in Hardy and Dirichlet-type spaces of the ball, J. Math. Anal. Appl., 2002, to appear
[5] Boundedness and compactness of generalized Hankel operators on bounded symmetric domains, J. Funct. Anal., Volume 137 (1996), pp. 97-151
[6] Membership of Hankel operators on the ball in unitary ideals, J. London Math. Soc., Volume 43 (1991), pp. 485-508
[7] Invariant inner product in spaces of holomorphic functions on bounded symmetric domains, Doc. Math., Volume 2 (1997), pp. 213-261
[8] Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Oper. Theory Adv. Appl., 122, Birkhäuser, Basel, 2001, pp. 89-138
[9] Holomorphic Sobolev spaces on the ball, Dissertationes Math., Volume 276 (1989)
[10] Möbius invariant Besov p-spaces and Hankel operators in the Bergman space on the ball in
[11] Möbius invariant spaces on the unit ball, Michigan Math. J., Volume 39 (1992), pp. 509-536
[12] Tangential limits and exceptional sets for holomorphic Besov functions in the unit ball of
[13] Invariant differential operators and holomorphic function spaces, J. Lie Theory, Volume 10 (2000), pp. 1-31
[14] Operator Theory in Function Spaces, Dekker, New York, 1990
[15] Holomorphic Besov spaces on bounded symmetric domains, I, Quart. J. Math. Oxford, Volume 46 (1995), pp. 239-256
[16] Holomorphic Besov spaces on bounded symmetric domains, II, Indiana Univ. Math. J., Volume 44 (1995), pp. 1017-1031
Cité par Sources :