Dans cette Note, on étudie l'existence de contrôles insensibilisants pour une équation de la chaleur semi-linéaire, avec des non-linéarités superlinéaires à l'infini. On démontre l'existence de contrôles insensibilisant la norme L2 de la solution observée dans un ouvert inclus dans le domaine considéré, sous des hypothèses convenables sur la non-linéarité et le second membre de l'équation. La démonstration fait appel à des inégalités de Carleman globales, la régularisation parabolique et un argument de point fixe.
This Note is concerned with the existence of insensitizing controls for a semilinear heat equation when we consider nonlinearities that behave superlinearly at infinity. We prove the existence of a control insensitizing the L2-norm of the observation of the solution in an open subset of the considered domain under appropriate assumptions on the nonlinear term f(y) and the second member ξ of the equation. The proof uses global Carleman estimates, parabolic regularity and a fixed point argument.
Révisé le :
Publié le :
@article{CRMATH_2002__335_8_677_0, author = {Bodart, Olivier and Gonz\'alez-Burgos, Manuel and P\'erez-Garc{\'\i}a, Rosario}, title = {Insensitizing controls for a semilinear heat equation with a superlinear nonlinearity}, journal = {Comptes Rendus. Math\'ematique}, pages = {677--682}, publisher = {Elsevier}, volume = {335}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02547-5}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02547-5/} }
TY - JOUR AU - Bodart, Olivier AU - González-Burgos, Manuel AU - Pérez-García, Rosario TI - Insensitizing controls for a semilinear heat equation with a superlinear nonlinearity JO - Comptes Rendus. Mathématique PY - 2002 SP - 677 EP - 682 VL - 335 IS - 8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02547-5/ DO - 10.1016/S1631-073X(02)02547-5 LA - en ID - CRMATH_2002__335_8_677_0 ER -
%0 Journal Article %A Bodart, Olivier %A González-Burgos, Manuel %A Pérez-García, Rosario %T Insensitizing controls for a semilinear heat equation with a superlinear nonlinearity %J Comptes Rendus. Mathématique %D 2002 %P 677-682 %V 335 %N 8 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02547-5/ %R 10.1016/S1631-073X(02)02547-5 %G en %F CRMATH_2002__335_8_677_0
Bodart, Olivier; González-Burgos, Manuel; Pérez-García, Rosario. Insensitizing controls for a semilinear heat equation with a superlinear nonlinearity. Comptes Rendus. Mathématique, Tome 335 (2002) no. 8, pp. 677-682. doi : 10.1016/S1631-073X(02)02547-5. http://www.numdam.org/articles/10.1016/S1631-073X(02)02547-5/
[1] Controls insensitizing the norm of the solution of a semilinear heat equation, J. Math. Anal. Appl., Volume 195 (1995) no. 3, pp. 658-683
[2] O. Bodart, M. González-Burgos, R. Pérez-Garcı́a, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient, in preparation
[3] O. Bodart, M. González-Burgos, R. Pérez-Garcı́a, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, in preparation
[4] O. Bodart, M. González-Burgos, R. Pérez-Garcı́a, A local result on insensitizing controls for the heat equation with nonlinear boundary Fourier conditions, in preparation
[5] A. Doubova, E. Fernández-Cara, M. González-Burgos, On the controllability of the heat equation with nonlinear boundary Fourier conditions, in preparation
[6] Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 17 (2000) no. 5, pp. 583-616
[7] Controllability of Evolution Equations, Lecture Notes Ser., 34, Seoul National University, Seoul, 1996
[8] Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967
[9] Quelques notions dans l'analyse et le contrôle de systèmes à données incomplètes, First Congress on Applied Mathematics, University of Málaga, Málaga (1990), pp. 43-54
[10] Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, Volume 25 (2000) no. 1&2, pp. 39-72
[11] Exact boundary controllability for the semilinear wave equation (Brezis, H.; Lions, J.-L., eds.), Nonlinear Partial Differential Equations and their Applications, Vol. X, Pitman, 1991, pp. 357-391
Cité par Sources :