Insensitizing controls for a semilinear heat equation with a superlinear nonlinearity
[Contrôles insensibilisants pour une équation de la chaleur semi-linéaire avec non-linéarité superlinéaire]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 8, pp. 677-682.

Dans cette Note, on étudie l'existence de contrôles insensibilisants pour une équation de la chaleur semi-linéaire, avec des non-linéarités superlinéaires à l'infini. On démontre l'existence de contrôles insensibilisant la norme L2 de la solution observée dans un ouvert 𝒪 inclus dans le domaine considéré, sous des hypothèses convenables sur la non-linéarité et le second membre de l'équation. La démonstration fait appel à des inégalités de Carleman globales, la régularisation parabolique et un argument de point fixe.

This Note is concerned with the existence of insensitizing controls for a semilinear heat equation when we consider nonlinearities that behave superlinearly at infinity. We prove the existence of a control insensitizing the L2-norm of the observation of the solution in an open subset 𝒪 of the considered domain under appropriate assumptions on the nonlinear term f(y) and the second member ξ of the equation. The proof uses global Carleman estimates, parabolic regularity and a fixed point argument.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02547-5
Bodart, Olivier 1 ; González-Burgos, Manuel 2 ; Pérez-García, Rosario 2

1 Laboratoire de mathématiques appliquées, UMR CNRS 6620, Université Blaise-Pascal (Clermont-Ferrand 2), 63177 Aubiere, France
2 Dpto. EDAN, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla, Spain
@article{CRMATH_2002__335_8_677_0,
     author = {Bodart, Olivier and Gonz\'alez-Burgos, Manuel and P\'erez-Garc{\'\i}a, Rosario},
     title = {Insensitizing controls for a semilinear heat equation with a superlinear nonlinearity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {677--682},
     publisher = {Elsevier},
     volume = {335},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02547-5},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02547-5/}
}
TY  - JOUR
AU  - Bodart, Olivier
AU  - González-Burgos, Manuel
AU  - Pérez-García, Rosario
TI  - Insensitizing controls for a semilinear heat equation with a superlinear nonlinearity
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 677
EP  - 682
VL  - 335
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02547-5/
DO  - 10.1016/S1631-073X(02)02547-5
LA  - en
ID  - CRMATH_2002__335_8_677_0
ER  - 
%0 Journal Article
%A Bodart, Olivier
%A González-Burgos, Manuel
%A Pérez-García, Rosario
%T Insensitizing controls for a semilinear heat equation with a superlinear nonlinearity
%J Comptes Rendus. Mathématique
%D 2002
%P 677-682
%V 335
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02547-5/
%R 10.1016/S1631-073X(02)02547-5
%G en
%F CRMATH_2002__335_8_677_0
Bodart, Olivier; González-Burgos, Manuel; Pérez-García, Rosario. Insensitizing controls for a semilinear heat equation with a superlinear nonlinearity. Comptes Rendus. Mathématique, Tome 335 (2002) no. 8, pp. 677-682. doi : 10.1016/S1631-073X(02)02547-5. http://www.numdam.org/articles/10.1016/S1631-073X(02)02547-5/

[1] Bodart, O.; Fabre, C. Controls insensitizing the norm of the solution of a semilinear heat equation, J. Math. Anal. Appl., Volume 195 (1995) no. 3, pp. 658-683

[2] O. Bodart, M. González-Burgos, R. Pérez-Garcı́a, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient, in preparation

[3] O. Bodart, M. González-Burgos, R. Pérez-Garcı́a, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, in preparation

[4] O. Bodart, M. González-Burgos, R. Pérez-Garcı́a, A local result on insensitizing controls for the heat equation with nonlinear boundary Fourier conditions, in preparation

[5] A. Doubova, E. Fernández-Cara, M. González-Burgos, On the controllability of the heat equation with nonlinear boundary Fourier conditions, in preparation

[6] Fernández-Cara, E.; Zuazua, E. Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 17 (2000) no. 5, pp. 583-616

[7] Fursikov, A.; Imanuvilov, O.Yu Controllability of Evolution Equations, Lecture Notes Ser., 34, Seoul National University, Seoul, 1996

[8] Ladyzenskaya, O.A.; Solonnikov, V.A.; Uraltzeva, N.N. Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967

[9] Lions, J.-L. Quelques notions dans l'analyse et le contrôle de systèmes à données incomplètes, First Congress on Applied Mathematics, University of Málaga, Málaga (1990), pp. 43-54

[10] De Teresa, L. Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, Volume 25 (2000) no. 1&2, pp. 39-72

[11] Zuazua, E. Exact boundary controllability for the semilinear wave equation (Brezis, H.; Lions, J.-L., eds.), Nonlinear Partial Differential Equations and their Applications, Vol. X, Pitman, 1991, pp. 357-391

Cité par Sources :