Si le tenseur de Riemann–Christoffel associé à un champ de classe de matrices symétriques définies positives d'ordre trois s'annule sur un ouvert connexe et simplement connexe , alors ce champ est celui du tenseur métrique associé à une déformation de classe de l'ensemble , déterminée de façon unique à une isométrie de près. On établit ici la continuité de l'application ainsi définie, pour des topologies métrisables convenables.
If the Riemann–Christoffel tensor associated with a field of class of positive definite symmetric matrices of order three vanishes in a connected and simply connected open subset , then this field is the metric tensor field associated with a deformation of class of the set , uniquely determined up to isometries of . We establish here that the mapping defined in this fashion is continuous, for ad hoc metrizable topologies.
Publié le :
@article{CRMATH_2002__335_5_489_0, author = {Ciarlet, Philippe G. and Laurent, Florian}, title = {Up to isometries, a deformation is a continuous function of its metric tensor}, journal = {Comptes Rendus. Math\'ematique}, pages = {489--493}, publisher = {Elsevier}, volume = {335}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02504-9}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02504-9/} }
TY - JOUR AU - Ciarlet, Philippe G. AU - Laurent, Florian TI - Up to isometries, a deformation is a continuous function of its metric tensor JO - Comptes Rendus. Mathématique PY - 2002 SP - 489 EP - 493 VL - 335 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02504-9/ DO - 10.1016/S1631-073X(02)02504-9 LA - en ID - CRMATH_2002__335_5_489_0 ER -
%0 Journal Article %A Ciarlet, Philippe G. %A Laurent, Florian %T Up to isometries, a deformation is a continuous function of its metric tensor %J Comptes Rendus. Mathématique %D 2002 %P 489-493 %V 335 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02504-9/ %R 10.1016/S1631-073X(02)02504-9 %G en %F CRMATH_2002__335_5_489_0
Ciarlet, Philippe G.; Laurent, Florian. Up to isometries, a deformation is a continuous function of its metric tensor. Comptes Rendus. Mathématique, Tome 335 (2002) no. 5, pp. 489-493. doi : 10.1016/S1631-073X(02)02504-9. http://www.numdam.org/articles/10.1016/S1631-073X(02)02504-9/
[1] Nonlinear Problems of Elasticity, Springer-Verlag, Berlin, 1995
[2] Compatibility conditions for a left Cauchy–Green strain field, J. Elasticity, Volume 21 (1989), pp. 271-308
[3] Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988
[4] On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pure Appl., Volume 81 (2002), pp. 167-185
[5] P.G. Ciarlet, F. Laurent, On the continuity of a deformation as a function of its Cauchy–Green tensor, 2002, to appear
Cité par Sources :