Soit k un corps algébriquement clos de caractéristique p. Soit un revêtement fini galoisien, de groupe G, ramifié seulement au-dessus d'un point (avec ramification sauvage). On montre l'existence d'un revêtement de ce type avec tous conducteurs suffisamment grands quand les p-Sylow de G sont d'ordre p. La démonstration consiste à étudier la géométrie formelle.
Consider a wildly ramified G-Galois cover of curves branched at only one point over an algebraically closed field k of characteristic p. In this note, I prove using formal patching that all sufficiently large conductors occur for such covers φ when the Sylow p-subgroups of G have order p.
Accepté le :
Publié le :
@article{CRMATH_2002__335_5_485_0, author = {Pries, Rachel J.}, title = {Conductors of wildly ramified covers, {II}}, journal = {Comptes Rendus. Math\'ematique}, pages = {485--487}, publisher = {Elsevier}, volume = {335}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02492-5}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02492-5/} }
TY - JOUR AU - Pries, Rachel J. TI - Conductors of wildly ramified covers, II JO - Comptes Rendus. Mathématique PY - 2002 SP - 485 EP - 487 VL - 335 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02492-5/ DO - 10.1016/S1631-073X(02)02492-5 LA - en ID - CRMATH_2002__335_5_485_0 ER -
Pries, Rachel J. Conductors of wildly ramified covers, II. Comptes Rendus. Mathématique, Tome 335 (2002) no. 5, pp. 485-487. doi : 10.1016/S1631-073X(02)02492-5. http://www.numdam.org/articles/10.1016/S1631-073X(02)02492-5/
[1] Field Arithmetic, Springer-Verlag, Berlin, 1986
[2] Abhyankar's conjecture on Galois groups over curves, Invent. Math., Volume 117 (1994) no. 1, pp. 1-25
[3] Patching and thickening problems, J. Algebra, Volume 212 (1999) no. 1, pp. 272-304
[4] R. Pries, Conductors of wildly ramified covers, I, Preprint, 2001
[5] R. Pries, Conductors of wildly ramified covers, III, Preprint, 2001
[6] R. Pries, Families of wildly ramified covers of curves, Amer. J. Math., accepted
[7] Revêtements de la droite affine en caractéristique p>0 et conjecture d'Abhyankar, Invent. Math., Volume 116 (1994) no. 1–3, pp. 425-462
Cité par Sources :