Soit X un schéma projectif et localement intersection complète. On démontre qu'il existe un voisinage formel, X∞, de X, dans lequel X est une intersection complète globale ; c'est-à-dire que X est l'intersection de codim(X) hypersurfaces.
Given a projective l.c.i. scheme, , we show that X has a smooth formal neighbourhood in which X is globally a complete intersection; that is, X is the intersection of codim(X) hypersurfaces.
Reçu le :
Révisé le :
Publié le :
DOI :
10.1016/S1631-073X(02)02490-1
Révisé le :
Publié le :
Affiliations des auteurs :
Maclean, Catriona 1
@article{CRMATH_2002__335_4_355_0, author = {Maclean, Catriona}, title = {Deformations of locally complete intersections}, journal = {Comptes Rendus. Math\'ematique}, pages = {355--358}, publisher = {Elsevier}, volume = {335}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02490-1}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02490-1/} }
TY - JOUR AU - Maclean, Catriona TI - Deformations of locally complete intersections JO - Comptes Rendus. Mathématique PY - 2002 SP - 355 EP - 358 VL - 335 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02490-1/ DO - 10.1016/S1631-073X(02)02490-1 LA - en ID - CRMATH_2002__335_4_355_0 ER -
Maclean, Catriona. Deformations of locally complete intersections. Comptes Rendus. Mathématique, Tome 335 (2002) no. 4, pp. 355-358. doi : 10.1016/S1631-073X(02)02490-1. http://www.numdam.org/articles/10.1016/S1631-073X(02)02490-1/
[1] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math., Vol. 52, Springer
[2] A. Grothendieck, S.G.A., Facsimile 1, exposes 1–3, IHES, 1962
Cité par Sources :