Deformations of locally complete intersections
[Déformations des schémas localement intersections complètes]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 4, pp. 355-358.

Soit X un schéma projectif et localement intersection complète. On démontre qu'il existe un voisinage formel, X, de X, dans lequel X est une intersection complète globale ; c'est-à-dire que X est l'intersection de codim(X) hypersurfaces.

Given a projective l.c.i. scheme, X N , we show that X has a smooth formal neighbourhood in which X is globally a complete intersection; that is, X is the intersection of codim(X) hypersurfaces.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02490-1
Maclean, Catriona 1

1 Institut de mathématiques de Jussieu, Université Paris 6, 175, rue de Chevaleret, 75013, Paris, France
@article{CRMATH_2002__335_4_355_0,
     author = {Maclean, Catriona},
     title = {Deformations of locally complete intersections},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {355--358},
     publisher = {Elsevier},
     volume = {335},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02490-1},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02490-1/}
}
TY  - JOUR
AU  - Maclean, Catriona
TI  - Deformations of locally complete intersections
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 355
EP  - 358
VL  - 335
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02490-1/
DO  - 10.1016/S1631-073X(02)02490-1
LA  - en
ID  - CRMATH_2002__335_4_355_0
ER  - 
%0 Journal Article
%A Maclean, Catriona
%T Deformations of locally complete intersections
%J Comptes Rendus. Mathématique
%D 2002
%P 355-358
%V 335
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02490-1/
%R 10.1016/S1631-073X(02)02490-1
%G en
%F CRMATH_2002__335_4_355_0
Maclean, Catriona. Deformations of locally complete intersections. Comptes Rendus. Mathématique, Tome 335 (2002) no. 4, pp. 355-358. doi : 10.1016/S1631-073X(02)02490-1. http://www.numdam.org/articles/10.1016/S1631-073X(02)02490-1/

[1] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math., Vol. 52, Springer

[2] A. Grothendieck, S.G.A., Facsimile 1, exposes 1–3, IHES, 1962

Cité par Sources :