Soit un domain borné et régulier de , N⩾2, qui est symétrique par rapport à l'origine. Dans cette Note, nous montrons que, sous certaines hypothèses sur (par exemple convexité dans les directions x1,…,xN), la matrice hessienne calculée à zero est diagonale et strictement négative.
Let be a smooth bounded domain of , N⩾2, which is symmetric with respect to the origin. In this Note we prove that, under some geometrical condition on (for example convexity in the directions x1,…,xN), the Hessian matrix of the Robin function computed at zero is diagonal and strictly negative definite.
Publié le :
@article{CRMATH_2002__335_2_157_0, author = {Grossi, Massimo}, title = {On the nondegeneracy of the critical points of the {Robin} function in symmetric domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {157--160}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02448-2}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02448-2/} }
TY - JOUR AU - Grossi, Massimo TI - On the nondegeneracy of the critical points of the Robin function in symmetric domains JO - Comptes Rendus. Mathématique PY - 2002 SP - 157 EP - 160 VL - 335 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02448-2/ DO - 10.1016/S1631-073X(02)02448-2 LA - en ID - CRMATH_2002__335_2_157_0 ER -
%0 Journal Article %A Grossi, Massimo %T On the nondegeneracy of the critical points of the Robin function in symmetric domains %J Comptes Rendus. Mathématique %D 2002 %P 157-160 %V 335 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02448-2/ %R 10.1016/S1631-073X(02)02448-2 %G en %F CRMATH_2002__335_2_157_0
Grossi, Massimo. On the nondegeneracy of the critical points of the Robin function in symmetric domains. Comptes Rendus. Mathématique, Tome 335 (2002) no. 2, pp. 157-160. doi : 10.1016/S1631-073X(02)02448-2. http://www.numdam.org/articles/10.1016/S1631-073X(02)02448-2/
[1] On a variational problemwith lack of compactness: the topological effect of the critical points at infinity, Calc. Var., Volume 3 (1995), pp. 67-93
[2] Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations, SIAM Rev., Volume 38 (1996), pp. 239-255
[3] Asymptotics for elliptic equations involving the critical growth, Partial Differential Equations and Calculus of Variations, Progr. Nonlinear Differential Equations Appl., 1, Birkäuser, Boston, 1989, pp. 149-192
[4] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983
[5] Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent, Nonlinear Anal., Volume 20 (1993), pp. 571-603
[6] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991), pp. 159-174
[7] The role of the Green's function in a nonlinear elliptic equation involving critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990), pp. 1-52
[8] Proof of two conjecture of H. Brezis and L.A. Peletier, Manuscripta Math., Volume 65 (1989), pp. 19-37
Cité par Sources :