Extreme values of particular non-linear processes
[Valeurs extrêmes pour des processus non linéaires particuliers]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 1, pp. 73-78.

Nous étudions le comportement asymptotique des maxima d'une classe générale de processus chaotiques déterministes – comprenant les applications tent et logistique –, de processus chaotiques bruités et des processus longue mémoire gaussiens de Gegenbauer à k facteurs.

We investigate the asymptotic behavior of the maxima of a general class of deterministic chaotic processes – including the tent map and the logistic map –, of noisy chaotic processes, and of the Gaussian long memory k-factor Gegenbauer processes.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02431-7
Guégan, Dominique 1 ; Ladoucette, Sophie 1, 2

1 École normale supérieure de Cachan, GRID, UMR CNRS 8534, 61, avenue du Président Wilson, 94235 Cachan cedex, France
2 Banque de France, 41-1391 DGERI-DEER-Centre de Recherche, 31, rue Croix des Petits Champs, 75049 Paris cedex 1, France
@article{CRMATH_2002__335_1_73_0,
     author = {Gu\'egan, Dominique and Ladoucette, Sophie},
     title = {Extreme values of particular non-linear processes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {73--78},
     publisher = {Elsevier},
     volume = {335},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02431-7},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02431-7/}
}
TY  - JOUR
AU  - Guégan, Dominique
AU  - Ladoucette, Sophie
TI  - Extreme values of particular non-linear processes
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 73
EP  - 78
VL  - 335
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02431-7/
DO  - 10.1016/S1631-073X(02)02431-7
LA  - en
ID  - CRMATH_2002__335_1_73_0
ER  - 
%0 Journal Article
%A Guégan, Dominique
%A Ladoucette, Sophie
%T Extreme values of particular non-linear processes
%J Comptes Rendus. Mathématique
%D 2002
%P 73-78
%V 335
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02431-7/
%R 10.1016/S1631-073X(02)02431-7
%G en
%F CRMATH_2002__335_1_73_0
Guégan, Dominique; Ladoucette, Sophie. Extreme values of particular non-linear processes. Comptes Rendus. Mathématique, Tome 335 (2002) no. 1, pp. 73-78. doi : 10.1016/S1631-073X(02)02431-7. http://www.numdam.org/articles/10.1016/S1631-073X(02)02431-7/

[1] Berman, S.M. Limit theorems for the maximum term in stationary sequences, Ann. Math. Statist., Volume 35 (1964), pp. 502-516

[2] Feller, W. An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York, 1971

[3] Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frequency distribution of the largest or smallest member of a sample, Proc. Cambridge Phil. Soc., Volume 24 (1928), pp. 180-190

[4] Giraitis, L.; Leipus, R. A generalized fractionally differencing approach in long memory modeling, Lithuanian Math. J., Volume 35 (1995), pp. 65-81

[5] Gnedenko, B.V. Sur la distribution limité du terme d'une série aléatoire, Ann. Math., Volume 44 (1943), pp. 423-453

[6] Guégan, D. Long memory behavior for simulated chaotic time series, IEICE Trans. Fund. E, Volume 84-A (2001), pp. 2145-2154

[7] D. Guégan, S. Ladoucette, Invariant measures and second order properties for maps on [0,1], Preprint 01.07, University of Reims, France, 2001

[8] D. Guégan, S. Ladoucette, Extremal behavior of particular non-linear processes, Preprint 02.01, GRID, ENS Cachan, France, 2002

[9] Hall, P.; Wolff, R.C.L. Properties of distributions and correlation integrals for generalized versions of the logistic map, Stochastics Process Appl., Volume 77 (1998), pp. 123-137

[10] Hsing, T. Estimating the parameters of rare events, Stochastics Process Appl., Volume 37 (1991), pp. 117-139

[11] Lawrance, A.J.; Spencer, N.M. Statistical aspects of curved chaotic map models and their stochastic reversals, Scand. J. Statist., Volume 25 (1998), pp. 371-382

[12] Leadbetter, M.R.; Lindgren, G.; Rootzen, H. Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, Berlin, 1983

[13] Loreto, V.; Paladin, G.; Vulpiani, A. On the concept of complexity in random dynamical systems, Phys. Rev. E, Volume 53 (1996), pp. 2087-2098

[14] Woodward, W.A.; Cheng, Q.C.; Gray, H.L. A k-factor GARMA long memory model, J. Time Ser. Anal., Volume 19 (1998), pp. 485-504

Cité par Sources :