La définition d'une solution des équations de Navier–Stokes varie avec les auteurs mais le lien entre ces différentes définitions n'est pas toujours explicite. Dans cette Note, on se propose de montrer que six des définitions les plus courantes sont équivalentes sous une hypothèse physiquement raisonnable. On indique ensuite quelques conséquences de ce résultat.
The definition of a solution to the Navier–Stokes equations varies according to authors, but the link between those different definitions is not always explicit. In this Note, we intend to prove that six of the most common definitions are equivalent under a physically reasonable assumption. We then indicate a few consequences of this result.
Publié le :
@article{CRMATH_2002__335_1_27_0, author = {Dubois, Sandrine}, title = {What is a solution to the {Navier{\textendash}Stokes} equations?}, journal = {Comptes Rendus. Math\'ematique}, pages = {27--32}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02419-6}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02419-6/} }
TY - JOUR AU - Dubois, Sandrine TI - What is a solution to the Navier–Stokes equations? JO - Comptes Rendus. Mathématique PY - 2002 SP - 27 EP - 32 VL - 335 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02419-6/ DO - 10.1016/S1631-073X(02)02419-6 LA - en ID - CRMATH_2002__335_1_27_0 ER -
Dubois, Sandrine. What is a solution to the Navier–Stokes equations?. Comptes Rendus. Mathématique, Tome 335 (2002) no. 1, pp. 27-32. doi : 10.1016/S1631-073X(02)02419-6. http://www.numdam.org/articles/10.1016/S1631-073X(02)02419-6/
[1] On the strong solvability of the Navier–Stokes equations, J. Math. Fluid Mech., Volume 2 (2000), pp. 16-98
[2] P. Auscher, P. Tchamitchian, Espaces critiques pour le système des équations de Navier–Stokes incompressibles, Preprint, 1999
[3] S. Dubois, Mild solutions to the Navier–Stokes equations and energy equalities, Adv. Differential Equations, to appear
[4] S. Dubois, Uniqueness for some Leray–Hopf solutions to the Navier–Stokes equations, J. Differential Equations, to appear
[5] On the nonstationnary Navier–Stokes system, Rend. Sem. Math. Univ. Padova, Volume 32 (1962), pp. 243-260
[6] Unicité dans et d'autres espaces fonctionnels limites, Rev. Mat. Iberoamericana, Volume 16 (2000), pp. 605-667
[7] Une remarque sur l'unicité des solutions des équations de Navier–Stokes en dimension n, Bull. Soc. Math. France, Volume 89 (1961), pp. 1-8
[8] On global infinite energy solutions to the Navier–Stokes equations in two dimensions, Arch. Rational Mech. Anal., Volume 161 (2002), pp. 307-337
[9] Well-posedness for the Navier–Stokes equations, Adv. Math., Volume 157 (2001), pp. 22-35
[10] Bilinear estimates in BMO and the Navier–Stokes equations, Math. Zeit., Volume 235 (2000), pp. 173-194
[11] Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations, Volume 19 (1994), pp. 959-1014
[12] Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248
[13] Mathematical Topics in Fluid Mechanics, Vol 1, Incompressible Models, Oxford University Press, 1996
[14] Asymptotic behaviour of global solutions to the Navier–Stokes equations in , Rev. Mat. Iberoamericana, Volume 14 (1998), pp. 71-93
[15] The initial value problem for the Navier–Stokes equations (Langer, R.E., ed.), Nonlinear Problems, University of Wisconsin Press, Madison, 1963, pp. 69-98
Cité par Sources :