Nous étudions des problèmes de perturbations singulières (NLS), (N). On montre l'existence de solutions positives qui se concentrent sur une sphère.
We discuss some existence results concerning problems (NLS) and (N), proving the existence of radial solutions concentrating on a sphere.
Publié le :
@article{CRMATH_2002__335_2_145_0, author = {Ambrosetti, Antonio and Malchiodi, Andrea and Ni, Wei-Ming}, title = {Solutions, concentrating on spheres, to symmetric singularly perturbed problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {145--150}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02414-7}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02414-7/} }
TY - JOUR AU - Ambrosetti, Antonio AU - Malchiodi, Andrea AU - Ni, Wei-Ming TI - Solutions, concentrating on spheres, to symmetric singularly perturbed problems JO - Comptes Rendus. Mathématique PY - 2002 SP - 145 EP - 150 VL - 335 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02414-7/ DO - 10.1016/S1631-073X(02)02414-7 LA - en ID - CRMATH_2002__335_2_145_0 ER -
%0 Journal Article %A Ambrosetti, Antonio %A Malchiodi, Andrea %A Ni, Wei-Ming %T Solutions, concentrating on spheres, to symmetric singularly perturbed problems %J Comptes Rendus. Mathématique %D 2002 %P 145-150 %V 335 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02414-7/ %R 10.1016/S1631-073X(02)02414-7 %G en %F CRMATH_2002__335_2_145_0
Ambrosetti, Antonio; Malchiodi, Andrea; Ni, Wei-Ming. Solutions, concentrating on spheres, to symmetric singularly perturbed problems. Comptes Rendus. Mathématique, Tome 335 (2002) no. 2, pp. 145-150. doi : 10.1016/S1631-073X(02)02414-7. http://www.numdam.org/articles/10.1016/S1631-073X(02)02414-7/
[1] Proc. Roy. Soc. Edinburg Sect. A, 128 (1998), pp. 1131-1161
[2] Arch. Rational Mech. Anal., 140 (1997), pp. 285-300
[3] A. Ambrosetti, A. Malchiodi, W.-M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, to appear
[4] Arch. Rational Mech. Anal., 159 (2001), pp. 253-271
[5] M. Badiale, T. D'Aprile, Concentration around a ssphere for a singularly perturbed Schrödinger equation, Preprint, Scuola Normale Superiore
[6] A. Malchiodi, M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., to appear
[7] Notices Amer. Math. Soc., 45 (1998) no. 1, pp. 9-18
[8] Duke Math. J., 70 (1993), pp. 247-281
[9] Comm. Pure Appl. Math., 48 (1995), pp. 731-768
[10] Comm. Math. Phys., 153 (1993), pp. 229-243
Cité par Sources :