Opérades Lie-admissibles
Comptes Rendus. Mathématique, Tome 334 (2002) no. 12, pp. 1047-1050.

Le but de cette Note est de présenter des classes remarquables d'algèbres Lie-admissibles qui contiennent entre autres les algèbres associatives, de Vinberg et pré-Lie et de déterminer leurs opérades associées et les opérades duales.

The aim of this paper is to present remarkable classes of Lie-admissible algebras containing in particular the associative algebras, the Vinberg and pre-Lie algebras. We determine the associated operads and their dual operads.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02408-1
Remm, Elisabeth 1

1 Université de Haute Alsace, Laboratoire de mathématiques et applications, 4, rue des Frères Lumière, 68093 Mulhouse cedex, France
@article{CRMATH_2002__334_12_1047_0,
     author = {Remm, Elisabeth},
     title = {Op\'erades {Lie-admissibles}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1047--1050},
     publisher = {Elsevier},
     volume = {334},
     number = {12},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02408-1},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02408-1/}
}
TY  - JOUR
AU  - Remm, Elisabeth
TI  - Opérades Lie-admissibles
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 1047
EP  - 1050
VL  - 334
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02408-1/
DO  - 10.1016/S1631-073X(02)02408-1
LA  - fr
ID  - CRMATH_2002__334_12_1047_0
ER  - 
%0 Journal Article
%A Remm, Elisabeth
%T Opérades Lie-admissibles
%J Comptes Rendus. Mathématique
%D 2002
%P 1047-1050
%V 334
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02408-1/
%R 10.1016/S1631-073X(02)02408-1
%G fr
%F CRMATH_2002__334_12_1047_0
Remm, Elisabeth. Opérades Lie-admissibles. Comptes Rendus. Mathématique, Tome 334 (2002) no. 12, pp. 1047-1050. doi : 10.1016/S1631-073X(02)02408-1. http://www.numdam.org/articles/10.1016/S1631-073X(02)02408-1/

[1] Albert, A.A. On the power-associative rings, Trans. Amer. Math. Soc., Volume 64 (1948), pp. 552-593

[2] Chapoton, F. Algèbres pré-Lie et algèbres de Hopf liées à la renormalisation, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001), pp. 681-684

[3] Chapoton, F.; Livernet, M. Pre-Lie algebra and the rooted trees operad, Internat. Math. Res. Notices, Volume 8 (2001), pp. 395-408

[4] Ginzburg, V.; Kapranov, M. Koszul duality for operads, Duke Math. J., Volume 76 (1994) no. 1, pp. 203-272

[5] Gerstenhaber, M. The cohomology structure of an associative ring, Ann. of Math. (2), Volume 78 (1963), pp. 267-288

[6] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry, I, Wiley, New York, 1963

[7] Loday, J.L. La renaissance des opérades, Séminaire Bourbaki 1994/95, Astérisque, Volume 237 (1996), pp. 47-74

[8] Loday, J.L. Une version non commutative des algèbres de Lie : les algèbres de Leibniz, Enseign. Math., Volume 39 (1993), pp. 269-293

[9] May, J.P. Geometry of Iterated Loop Spaces, Lecture Notes in Math., 271, Springer-Verlag, 1972

[10] Nijenhuis, A. Sur une classe de propriétés communes a quelques types différents d'algèbres, Enseign. Math. (2), Volume 14 (1968), pp. 225-277

[11] E. Remm, Structures affines sur les algèbres de Lie et opérades Lie-admissibles, Thèse, Mulhouse, 2001

Cité par Sources :