A maximum principle for bounded solutions of the telegraph equation in space dimension three
[Un principe du maximum pour les solutions bornées de l'équation des télégraphistes en dimension spatiale trois]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 12, pp. 1089-1094.

On démontre un principe du maximum pour les solutions faibles uL (×𝕋 3 ) de l'équation des télégraphistes uttΔxu+cut+λu=f(t,x) en dimension spatiale trois lorsque c>0, λ∈(0,c2/4] et fL (×𝕋 3 ) (Théorème 1). Le résultat est étendu à une solution et un terme forçant appartenant à un certain espace de mesures bornées (Théorème 2). Ces résultats fournissent une méthode de sous- et sur-solutions pour l'équation semilinéaire uttΔxu+cut=F(t,x,u).

A maximum principle is proved for the weak solutions uL (×𝕋 3 ) of the telegraph equation uttΔxu+cut+λu=f(t,x), in space dimension three, when c>0, λ∈(0,c2/4] and fL (×𝕋 3 ) (Theorem 1). The result is extended to a solution and a forcing belonging to a suitable space of bounded measures (Theorem 2). Those results provide a method of upper and lower solutions for the semilinear equation uttΔxu+cut=F(t,x,u).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02406-8
Mawhin, Jean 1 ; Ortega, Rafael 2 ; Robles-Pérez, Aureliano M. 2

1 Département de mathématique, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
2 Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
@article{CRMATH_2002__334_12_1089_0,
     author = {Mawhin, Jean and Ortega, Rafael and Robles-P\'erez, Aureliano M.},
     title = {A maximum principle for bounded solutions of the telegraph equation in space dimension three},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1089--1094},
     publisher = {Elsevier},
     volume = {334},
     number = {12},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02406-8},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02406-8/}
}
TY  - JOUR
AU  - Mawhin, Jean
AU  - Ortega, Rafael
AU  - Robles-Pérez, Aureliano M.
TI  - A maximum principle for bounded solutions of the telegraph equation in space dimension three
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 1089
EP  - 1094
VL  - 334
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02406-8/
DO  - 10.1016/S1631-073X(02)02406-8
LA  - en
ID  - CRMATH_2002__334_12_1089_0
ER  - 
%0 Journal Article
%A Mawhin, Jean
%A Ortega, Rafael
%A Robles-Pérez, Aureliano M.
%T A maximum principle for bounded solutions of the telegraph equation in space dimension three
%J Comptes Rendus. Mathématique
%D 2002
%P 1089-1094
%V 334
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02406-8/
%R 10.1016/S1631-073X(02)02406-8
%G en
%F CRMATH_2002__334_12_1089_0
Mawhin, Jean; Ortega, Rafael; Robles-Pérez, Aureliano M. A maximum principle for bounded solutions of the telegraph equation in space dimension three. Comptes Rendus. Mathématique, Tome 334 (2002) no. 12, pp. 1089-1094. doi : 10.1016/S1631-073X(02)02406-8. http://www.numdam.org/articles/10.1016/S1631-073X(02)02406-8/

[1] Dieudonné, J. Éléments d'analyse, Tome II, Gauthier-Villars, Paris, 1974

[2] Fink, A.M. Almost Periodic Differential Equations, Lecture Notes in Math., 377, Springer, Berlin, 1974

[3] Mawhin, J.; Ortega, R.; Robles-Pérez, A.M. A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings, J. Math. Anal. Appl., Volume 251 (2000), pp. 695-709

[4] Ortega, R.; Robles-Pérez, A.M. A maximum principle for periodic solutions of the telegraph equation, J. Math. Anal. Appl., Volume 221 (1998), pp. 625-651

[5] Vladimirov, V.S. Equations of Mathematical Physics, Marcel Dekker, New York, 1971

Cité par Sources :