Dans cette Note on considére le probléme de meilleure approximation dans ℓp(n), 1<p⩽∞. Si hp, 1<p<∞, désigne la meilleure p-approximation de par éléments d'un sous-espace affine K de , h∉K, alors , où est une meilleure approximation uniforme de h par éléments de K, appelée approximation uniforme stricte. Nous prouvons que hp admet un développement asymptotique du type
In this paper we consider the problem of best approximation in ℓp(n), 1<p⩽∞. If hp, 1<p<∞, denotes the best p-approximation of the element from a proper affine subspace K of , h∉K, then , where is a best uniform approximation of h from K, the so-called strict uniform approximation. Our aim is to prove that for all there are , 1⩽j⩽r, such that
Accepté le :
Publié le :
@article{CRMATH_2002__334_12_1077_0, author = {Quesada, Jos\'e Mar{\i}́a and Mart{\'\i}nez-Moreno, Juan and Navas, Juan}, title = {On best $ \mathbf{p}$-approximation from affine subspaces: asymptotic expansion}, journal = {Comptes Rendus. Math\'ematique}, pages = {1077--1082}, publisher = {Elsevier}, volume = {334}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02403-2}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02403-2/} }
TY - JOUR AU - Quesada, José Marı́a AU - Martínez-Moreno, Juan AU - Navas, Juan TI - On best $ \mathbf{p}$-approximation from affine subspaces: asymptotic expansion JO - Comptes Rendus. Mathématique PY - 2002 SP - 1077 EP - 1082 VL - 334 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02403-2/ DO - 10.1016/S1631-073X(02)02403-2 LA - en ID - CRMATH_2002__334_12_1077_0 ER -
%0 Journal Article %A Quesada, José Marı́a %A Martínez-Moreno, Juan %A Navas, Juan %T On best $ \mathbf{p}$-approximation from affine subspaces: asymptotic expansion %J Comptes Rendus. Mathématique %D 2002 %P 1077-1082 %V 334 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02403-2/ %R 10.1016/S1631-073X(02)02403-2 %G en %F CRMATH_2002__334_12_1077_0
Quesada, José Marı́a; Martínez-Moreno, Juan; Navas, Juan. On best $ \mathbf{p}$-approximation from affine subspaces: asymptotic expansion. Comptes Rendus. Mathématique, Tome 334 (2002) no. 12, pp. 1077-1082. doi : 10.1016/S1631-073X(02)02403-2. http://www.numdam.org/articles/10.1016/S1631-073X(02)02403-2/
[1] Approximations in Lp and Chebychev approximations, J. Indian Soc. Appl. Math., Volume 11 (1963), pp. 1017-1026
[2] Rate of convergence of the discrete Pólya algorithm, J. Approx. Theory, Volume 60 (1990), pp. 24-30
[3] Linear minimax approximation as the limit of best Lp-approximation, SIAM J. Numer. Anal., Volume 11 (1974) no. 1, pp. 123-136
[4] Strict approximation on closed convex sets, Approx. Theory Appl., Volume 6 (1990), pp. 99-109
[5] The linear discrete Pólya algorithm, Appl. Math. Lett., Volume 8 (1995) no. 6, pp. 25-28
[6] Rate of convergence of the linear discrete Pólya algorithm, J. Approx. Theory, Volume 110 (2001), pp. 109-119
[7] J.M. Quesada, J. Martı́nez-Moreno, J. Navas, Asymptotic behaviour of best p-approximations from affine subspaces, J. Approx. Theory, submitted
[8] Tchebycheff approximation in a compact metric space, Bull. Amer. Math. Soc., Volume 68 (1962), pp. 405-410
[9] Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, Berlin, 1970
Cité par Sources :