The Föppl–von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity
[La théorie Föppl–von Kármán des plaques comme Γ-limite de l'élasticité non linéaire]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 2, pp. 201-206.

Nous montrons que la théorie Föppl–von Kármán des plaques émerge comme Γ-limite de la théorie de l'élasticité tridimensionnelle. La démonstration repose sur une generalisation aux derivées d'ordre supérieur de notre résultat de rigidité [5] que pour des fonctions v:(0,1)33, la distance L2 de ∇v à une rotation est bornée par un multiple de la distance L2 à l'ensemble SO(3) des rotations.

We show that the Föppl–von Kármán theory arises as a low energy Γ-limit of three-dimensional nonlinear elasticity. A key ingredient in the proof is a generalization to higher derivatives of our rigidity result [5] that for maps v:(0,1)33, the L2 distance of ∇v from a single rotation is bounded by a multiple of the L2 distance from the set SO(3) of all rotations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02388-9
Friesecke, Gero 1 ; James, Richard D. 2 ; Müller, Stefan 3

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
2 Department of Aerospace Engineering and Mechanics, 107 Akerman Hall, University of Minnesota, Minneapolis, MN 55455, USA
3 Max-Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig, Germany
@article{CRMATH_2002__335_2_201_0,
     author = {Friesecke, Gero and James, Richard~D. and M\"uller, Stefan},
     title = {The {F\"oppl{\textendash}von} {K\'arm\'an} plate theory as a low energy {\protect\emph{\ensuremath{\Gamma}}-limit} of nonlinear elasticity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {201--206},
     publisher = {Elsevier},
     volume = {335},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02388-9},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02388-9/}
}
TY  - JOUR
AU  - Friesecke, Gero
AU  - James, Richard D.
AU  - Müller, Stefan
TI  - The Föppl–von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 201
EP  - 206
VL  - 335
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02388-9/
DO  - 10.1016/S1631-073X(02)02388-9
LA  - en
ID  - CRMATH_2002__335_2_201_0
ER  - 
%0 Journal Article
%A Friesecke, Gero
%A James, Richard D.
%A Müller, Stefan
%T The Föppl–von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity
%J Comptes Rendus. Mathématique
%D 2002
%P 201-206
%V 335
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02388-9/
%R 10.1016/S1631-073X(02)02388-9
%G en
%F CRMATH_2002__335_2_201_0
Friesecke, Gero; James, Richard D.; Müller, Stefan. The Föppl–von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity. Comptes Rendus. Mathématique, Tome 335 (2002) no. 2, pp. 201-206. doi : 10.1016/S1631-073X(02)02388-9. http://www.numdam.org/articles/10.1016/S1631-073X(02)02388-9/

[1] Antman, S.S. Nonlinear Problems of Elasticity, Springer, New York, 1995

[2] Anzelotti, G.; Baldo, S.; Percivale, D. Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity, Asymptotic Anal., Volume 9 (1994), pp. 61-100

[3] Ciarlet, P.G. Mathematical Elasticity II – Theory of Plates, Elsevier, Amsterdam, 1997

[4] Fox, D.D.; Raoult, A.; Simo, J.C. A justification of nonlinear properly invariant plate theories, Arch. Rational Mech. Anal., Volume 124 (1993), pp. 157-199

[5] Friesecke, G.; James, R.D.; Müller, S. Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Série I, Volume 334 (2002), pp. 173-178

[6] G. Friesecke, R.D. James, S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., to appear

[7] LeDret, H.; Raoult, A. Le modéle de membrane non linéaire comme limite variationelle de l'élasticité non linéaire tridimensionelle, C. R. Acad. Sci. Paris, Série I, Volume 317 (1993), pp. 221-226

[8] LeDret, H.; Raoult, A. The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 73 (1995), pp. 549-578

[9] Love, A.E.H. A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1927

[10] Marigo, J.J.; Ghidouche, H.; Sedkaoui, Z. Des poutres flexibles aux fils extensibles : une hiérachie de modèles asymptotiques, C. R. Acad. Sci. Paris, Série IIb, Volume 326 (1998), pp. 79-84

[11] R. Monneau, Justification of nonlinear Kirchhoff–Love theory of plates as the application of a new singular inverse method, Preprint, 2001

[12] Pantz, O. Une justification partielle du modèle de plaque en flexion par Γ-convergence, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001), pp. 587-592

[13] A. Raoult, Personal communication

  • Chakrabortty, Amartya; Griso, Georges; Orlik, Julia Dimension reduction and homogenization of composite plate with matrix pre-strain, Asymptotic Analysis, Volume 138 (2024) no. 4, pp. 255-310 | DOI:10.3233/asy-241896 | Zbl:7922730
  • Bonito, Andrea; Guignard, Diane; Morvant, Angelique Numerical approximations of thin structure deformations, Comptes Rendus. Mécanique, Volume 351 (2024) no. S1, p. 181 | DOI:10.5802/crmeca.201
  • Ghiba, Ionel-Dumitrel; Lewintan, Peter; Sky, Adam; Neff, Patrizio An essay on deformation measures in isotropic thin shell theories: Bending versus curvature, Mathematics and Mechanics of Solids (2024) | DOI:10.1177/10812865241269725
  • Saem, Maryam Mohammadi; Ghiba, Ionel-Dumitrel; Neff, Patrizio A geometrically nonlinear Cosserat (micropolar) curvy shell model via gamma convergence, Journal of Nonlinear Science, Volume 33 (2023) no. 5, p. 67 (Id/No 70) | DOI:10.1007/s00332-023-09906-0 | Zbl:1524.74008
  • Mohan, Preetham; Yip, Nung Kwan; Yu, Thomas Minimal energy configurations of bilayer plates as a polynomial optimization problem, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 231 (2023), p. 33 (Id/No 113034) | DOI:10.1016/j.na.2022.113034 | Zbl:1523.74037
  • Bartels, Sören; Bonito, Andrea; Hornung, Peter Modeling and simulation of thin sheet folding, Interfaces and Free Boundaries, Volume 24 (2022) no. 4, pp. 459-485 | DOI:10.4171/ifb/478 | Zbl:1515.74047
  • Braun, Julian; Schmidt, Bernd An atomistic derivation of von-Kármán plate theory, Networks and Heterogeneous Media, Volume 17 (2022) no. 4, pp. 613-644 | DOI:10.3934/nhm.2022019 | Zbl:1502.70014
  • Shearman, Toby L.; Venkataramani, Shankar C. Distributed branch points and the shape of elastic surfaces with constant negative curvature, Journal of Nonlinear Science, Volume 31 (2021) no. 1, p. 60 (Id/No 13) | DOI:10.1007/s00332-020-09657-2 | Zbl:1479.53071
  • Brunetti, Matteo; Favata, Antonino; Paolone, Achille; Vidoli, Stefano A mixed variational principle for the Föppl-von Kármán equations, Applied Mathematical Modelling, Volume 79 (2020), pp. 381-391 | DOI:10.1016/j.apm.2019.10.041 | Zbl:1481.49051
  • Hornung, Peter; Rumpf, Martin; Simon, Stefan On material optimisation for nonlinearly elastic plates and shells, ESAIM: Control, Optimisation and Calculus of Variations, Volume 26 (2020), p. 82 | DOI:10.1051/cocv/2020053
  • Bartels, Sören Finite element simulation of nonlinear bending models for thin elastic rods and plates, Geometric Partial Differential Equations - Part I, Volume 21 (2020), p. 221 | DOI:10.1016/bs.hna.2019.06.003
  • Griso, Georges; Orlik, Julia; Wackerle, Stephan Asymptotic behavior for textiles in von-Kármán regime, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 144 (2020), pp. 164-193 | DOI:10.1016/j.matpur.2020.10.002 | Zbl:1452.35020
  • Chen, Zhengxiong; Wang, Ailun; Qin, Bin; Wang, Qingshan; Zhong, Rui Investigation on free vibration and transient response of functionally graded graphene platelets reinforced cylindrical shell resting on elastic foundation, The European Physical Journal Plus, Volume 135 (2020) no. 7 | DOI:10.1140/epjp/s13360-020-00577-4
  • Kohn, Robert V.; O'Brien, Ethan The wrinkling of a twisted ribbon, Journal of Nonlinear Science, Volume 28 (2018) no. 4, pp. 1221-1249 | DOI:10.1007/s00332-018-9447-0 | Zbl:1397.74079
  • Bartels, Sören Numerical solution of a Föppl-von Kármán model, SIAM Journal on Numerical Analysis, Volume 55 (2017) no. 3, pp. 1505-1524 | DOI:10.1137/16m1069791 | Zbl:1403.74097
  • Lorent, Andrew Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 33 (2016) no. 1, pp. 23-65 | DOI:10.1016/j.anihpc.2014.08.003 | Zbl:1328.30014
  • Altenbach, Holm; Eremeyev, Victor A. Cosserat-Type Shells, Generalized Continua from the Theory to Engineering Applications, Volume 541 (2013), p. 131 | DOI:10.1007/978-3-7091-1371-4_3
  • Perotti, L. E.; Bompadre, A.; Ortiz, M. Automatically inf-sup compliant diamond-mixed finite elements for Kirchhoff plates, International Journal for Numerical Methods in Engineering, Volume 96 (2013) no. 7, pp. 405-424 | DOI:10.1002/nme.4555 | Zbl:1352.74166
  • Bartels, Sören Finite element approximation of large bending isometries, Numerische Mathematik, Volume 124 (2013) no. 3, pp. 415-440 | DOI:10.1007/s00211-013-0519-7 | Zbl:1267.74109
  • Velčić, Igor Nonlinear weakly curved rod by Γ-convergence, Journal of Elasticity, Volume 108 (2012) no. 2, pp. 125-150 | DOI:10.1007/s10659-011-9358-x | Zbl:1243.74108
  • Velčić, Igor Shallow-shell models by Γ-convergence, Mathematics and Mechanics of Solids, Volume 17 (2012) no. 8, pp. 781-802 | DOI:10.1177/1081286511429889 | Zbl:7278889
  • Altenbach, Johannes; Altenbach, Holm; Eremeyev, Victor A. On generalized Cosserat-type theories of plates and shells: a short review and bibliography, Archive of Applied Mechanics, Volume 80 (2010) no. 1, pp. 73-92 | DOI:10.1007/s00419-009-0365-3 | Zbl:1184.74042
  • Neff, Patrizio; Hong, Kwon-Il; Jeong, Jena The Reissner-Mindlin plate is the Γ-limit of cosserat elasticity, M3AS. Mathematical Models Methods in Applied Sciences, Volume 20 (2010) no. 9, pp. 1553-1590 | DOI:10.1142/s0218202510004763 | Zbl:1253.74004
  • Neff, Patrizio Γ-convergene e for a geometrically exact Cosserat shell-model of defective elastic crystals, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, Volume 516 (2010), p. 301 | DOI:10.1007/978-3-7091-0174-2_9
  • Bělík, Pavel; Jennings, Bob; Shvartsman, Mikhail M.; Thomas, Cristina U. Modeling the behavior of heat-shrinkable thin films, Journal of Elasticity, Volume 95 (2009) no. 1-2, pp. 57-77 | DOI:10.1007/s10659-009-9194-4 | Zbl:1160.74032
  • Kerdid, Nabil; Le Dret, Hervé; Saı¨di, Abdelkader Numerical approximation for a non-linear membrane problem, International Journal of Non-Linear Mechanics, Volume 43 (2008) no. 9, p. 908 | DOI:10.1016/j.ijnonlinmec.2008.06.007
  • Mora, Maria Giovanna; Müller, Stefan Derivation of a rod theory for multiphase materials, Calculus of Variations and Partial Differential Equations, Volume 28 (2007) no. 2, pp. 161-178 | DOI:10.1007/s00526-006-0039-8 | Zbl:1105.74016
  • Ciarlet, Philippe G.; Gratie, Liliana; Kesavan, Srinivasan On the generalized von Kármán equations and their approximation, M3AS. Mathematical Models Methods in Applied Sciences, Volume 17 (2007) no. 4, pp. 617-633 | DOI:10.1142/s0218202507002042 | Zbl:1121.65118
  • Friesecke, Gero; James, Richard D.; Müller, Stefan A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Archive for Rational Mechanics and Analysis, Volume 180 (2006) no. 2, pp. 183-236 | DOI:10.1007/s00205-005-0400-7 | Zbl:1100.74039
  • Pruchnicki, Erick Nonlinearly elastic membrane model for heterogeneous shells by using a new double scale variational formulation: A formal asymptotic approach, Journal of Elasticity, Volume 84 (2006) no. 3, pp. 245-280 | DOI:10.1007/s10659-006-9066-0 | Zbl:1100.74043
  • Chaudhuri, Nirmalendu; Müller, Stefan Scaling of the Energy for Thin Martensitic Films, SIAM Journal on Mathematical Analysis, Volume 38 (2006) no. 2, p. 468 | DOI:10.1137/04061581x
  • Conti, Sergio; Maggi, Francesco; MÜller, Stefan Rigorous Derivation of Föppl’s Theory for Clamped Elastic Membranes Leads to Relaxation, SIAM Journal on Mathematical Analysis, Volume 38 (2006) no. 2, p. 657 | DOI:10.1137/050632567
  • Monneau, R. Some remarks on the asymptotic invertibility of the linearized operator of nonlinear elasticity in the context of the displacement approach, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 86 (2006) no. 5, pp. 400-409 | DOI:10.1002/zamm.200510249 | Zbl:1097.35011
  • Conti, Sergio; DeSimone, Antonio; Müller, Stefan Self-similar folding patterns and energy scaling in compressed elastic sheets, Computer Methods in Applied Mechanics and Engineering, Volume 194 (2005) no. 21-24, pp. 2534-2549 | DOI:10.1016/j.cma.2004.07.044 | Zbl:1082.74030
  • Babadjian, Jean-François; Francfort, Gilles A. Spatial heterogeneity in 3D-2D dimensional reduction., European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 11 (2005), pp. 139-160 | DOI:10.1051/cocv:2004031 | Zbl:1085.49015
  • Müller, Stefan; Pakzad, Mohammad Reza Regularity properties of isometric immersions, Mathematische Zeitschrift, Volume 251 (2005) no. 2, pp. 313-331 | DOI:10.1007/s00209-005-0804-y | Zbl:1082.58010
  • Podio-Guidugli, Paolo A New Quasilinear Model for Plate Buckling, The Rational Spirit in Modern Continuum Mechanics (2005), p. 673 | DOI:10.1007/1-4020-2308-1_37
  • Mora, Maria Giovanna; Müller, Stefan A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 21 (2004) no. 3, p. 271 | DOI:10.1016/j.anihpc.2003.08.001
  • Mora, Maria Giovanna; Müller, Stefan A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 21 (2004) no. 3, pp. 271-293 | DOI:10.1016/s0294-1449(03)00044-1 | Zbl:1109.74028
  • Venkataramani, Shankar C Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge, Nonlinearity, Volume 17 (2004) no. 1, p. 301 | DOI:10.1088/0951-7715/17/1/017

Cité par 40 documents. Sources : Crossref, zbMATH