An inner function which is not weak outer
[Une fonction intérieure qui n'est pas faiblement extérieure]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 11, pp. 957-960.

On construit une fonction intérieure I dans la boule unité B n telle que I(z)≠0 pour zB et le sous-espace IHp(B) n'est pas faiblement dense dans la classe de Hardy Hp(B), pour 0<p<1.

We construct a nonvanishing inner function I in the unit ball B n such that the subspace IHp(B) is not weakly dense in the Hardy space Hp(B), with 0<p<1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02374-9
Doubtsov, Evgueni 1

1 Department of Mathematics and Mechanics, St. Petersburg State University, Bibliotechnaya pl. 2, St. Petersburg 198904, Russia
@article{CRMATH_2002__334_11_957_0,
     author = {Doubtsov, Evgueni},
     title = {An inner function which is not weak outer},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {957--960},
     publisher = {Elsevier},
     volume = {334},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02374-9},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02374-9/}
}
TY  - JOUR
AU  - Doubtsov, Evgueni
TI  - An inner function which is not weak outer
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 957
EP  - 960
VL  - 334
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02374-9/
DO  - 10.1016/S1631-073X(02)02374-9
LA  - en
ID  - CRMATH_2002__334_11_957_0
ER  - 
%0 Journal Article
%A Doubtsov, Evgueni
%T An inner function which is not weak outer
%J Comptes Rendus. Mathématique
%D 2002
%P 957-960
%V 334
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02374-9/
%R 10.1016/S1631-073X(02)02374-9
%G en
%F CRMATH_2002__334_11_957_0
Doubtsov, Evgueni. An inner function which is not weak outer. Comptes Rendus. Mathématique, Tome 334 (2002) no. 11, pp. 957-960. doi : 10.1016/S1631-073X(02)02374-9. http://www.numdam.org/articles/10.1016/S1631-073X(02)02374-9/

[1] Aleksandrov, A.B. The existence of inner functions in the ball, Mat. Sb., Volume 118(160) (1982) no. 2(6), pp. 147-163 (in Russian); English translation: Math. USSR-Sb. 46 (1983) 143–159

[2] Aleksandrov, A.B. Function theory in the ball (Khenkin, G.M.; Vitushkin, A.G., eds.), Several Complex Variables II, Encyclopaedia Math. Sci., 8, Springer, 1994, pp. 107-178

[3] Duren, P.L.; Romberg, B.W.; Shields, A.L. Linear functionals on Hp spaces with 0<p<1, J. Reine Angew. Math., Volume 238 (1969), pp. 32-60

[4] Roberts, J.W. Cyclic inner functions in the Bergman spaces and weak outer functions in Hp (0<p<1), Illinois J. Math., Volume 29 (1985), pp. 25-38

[5] Rudin, W. New Constructions of Functions Holomorphic in the Unit Ball of n , CBMS Regional Conf. Ser. in Math., 63, American Mathematical Society, Providence, 1986

[6] Shapiro, H.S. Some remarks on weighted polynomial approximation of holomorphic functions, Mat. Sb., Volume 73(115) (1967) no. 3, pp. 320-330 (in Russian)

[7] Shapiro, J.H. Remarks on F-spaces of analytic functions, Lecture Notes in Math., 604, Springer-Verlag, 1977, pp. 107-124

[8] Zhu, K. Operator Theory in Function Spaces, Marcel Dekker, New York, 1990

Cité par Sources :