Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise
[Régularité Hölder–Sobolev des solutions d'une classe d'E.D.P.S. dirigées par un bruit coloré]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 10, pp. 869-874.

Dans cette Note nous présentons des résultats nouveaux concernant l'équivalence, l'existence et la régularité spatio–temporelle conjointe de diverses notions de solution relatives à une classe d'équations aux dérivées partielles stochastiques semilinéaires non autonomes définies dans un ouvert régulier borné convexe D d et dirigées par un bruit coloré en la variable spatiale défini à partir d'un processus de Wiener à valeurs dans L2(D).

In this Note we present new results regarding the equivalence, the existence and the joint space–time regularity properties of various notions of solution to a class of non-autonomous, semilinear, stochastic partial differential equations defined on a smooth, bounded, convex domain D d and driven by a spatially colored noise defined from an L2(D)-valued Wiener process.

Reçu le :
Accepté le :
DOI : 10.1016/S1631-073X(02)02359-2
Sanz-Solé, Marta 1 ; Vuillermot 2

1 Facultat de matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
2 I.E.C.N., Université Henri-Poincaré, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy cedex, France
@article{CRMATH_2002__334_10_869_0,
     author = {Sanz-Sol\'e, Marta and Vuillermot},
     title = {H\"older{\textendash}Sobolev regularity of solutions to a class of {SPDE's} driven by a spatially colored noise},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {869--874},
     publisher = {Elsevier},
     volume = {334},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02359-2},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02359-2/}
}
TY  - JOUR
AU  - Sanz-Solé, Marta
AU  - Vuillermot
TI  - Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 869
EP  - 874
VL  - 334
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02359-2/
DO  - 10.1016/S1631-073X(02)02359-2
LA  - en
ID  - CRMATH_2002__334_10_869_0
ER  - 
%0 Journal Article
%A Sanz-Solé, Marta
%A Vuillermot
%T Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise
%J Comptes Rendus. Mathématique
%D 2002
%P 869-874
%V 334
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02359-2/
%R 10.1016/S1631-073X(02)02359-2
%G en
%F CRMATH_2002__334_10_869_0
Sanz-Solé, Marta; Vuillermot. Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise. Comptes Rendus. Mathématique, Tome 334 (2002) no. 10, pp. 869-874. doi : 10.1016/S1631-073X(02)02359-2. http://www.numdam.org/articles/10.1016/S1631-073X(02)02359-2/

[1] Chojnowska-Michalik, A. Stochastic differential equations in Hilbert spaces, Banach Center Publ., Volume 5 (1979), pp. 53-73

[2] Dalang, R.C. Extending martingale measure stochastic integral with applications to spatially homogeneous S.P.D. E's, Electronic J. Probab., Volume 4 (1999), pp. 1-29

[3] Da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992

[4] Dawson, D.A.; Gorostiza, L.G. Solutions of evolution equations in Hilbert space, J. Differential Equations, Volume 68 (1987), pp. 299-319

[5] Eidelman, S.D.; Ivasis̆en, S.D. Investigation of the Green matrix for a homogeneous parabolic boundary value problem, Trans. Moscow Math. Soc., Volume 23 (1970), pp. 179-242

[6] Krylov, N.V.; Rozovskii, B.L. Stochastic evolution equations, J. Soviet Math., Volume 16 (1981), pp. 1233-1277

[7] León, J.A. Stochastic evolution equations with respect to semimartingales in Hilbert space, Stochastics, Volume 27 (1989), pp. 1-21

[8] O. Lévêque, Hyperbolic stochastic partial differential equations driven by boundary noises, Thèse EPFL 2452, Lausanne, 2001

[9] E. Pardoux, Équations aux dérivées partielles stochastiques nonlinéaires monotones : Étude de solutions fortes de type Itô, Thèse de l'Université Paris–Orsay 1556, Paris, 1975

[10] Peszat, S.; Zabczyk, J. Nonlinear stochastic wave and heat equations, Probab. Theory Related Fields, Volume 116 (2000), pp. 421-443

[11] M. Sanz-Solé, P.-A. Vuillermot, Equivalence and Hölder–Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations, 2002, in preparation

[12] Walsh, J.B. An introduction to stochastic partial differential equations, École d'Été de Probabilités de Saint-Flour XIV, Lecture Notes in Math., 1180, Springer, New York, 1986, pp. 265-439

Cité par Sources :