Soit Γ un réseau dans un groupe de Lie linéaire simple, dont le rang rationnel est supérieur ou égal à 7, et soit M une variété fermée de dimension 4 dont la caractéristique d'Euler–Poincaré est non nulle. Nous montrons que toute action analytique réelle de Γ sur M, qui conserve le volume, se factorise à travers l'action d'un groupe fini.
We prove that if Γ is a lattice of -rank at least 7 in a simple linear Lie group, then any real-analytic, volume-preserving action of Γ on a closed 4-manifold of nonzero Euler characteristic factors through a finite group action.
Accepté le :
Publié le :
@article{CRMATH_2002__334_11_1011_0, author = {Farb, Benson and Shalen, Peter B.}, title = {Real-analytic, volume-preserving actions of lattices on 4-manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {1011--1014}, publisher = {Elsevier}, volume = {334}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02347-6}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02347-6/} }
TY - JOUR AU - Farb, Benson AU - Shalen, Peter B. TI - Real-analytic, volume-preserving actions of lattices on 4-manifolds JO - Comptes Rendus. Mathématique PY - 2002 SP - 1011 EP - 1014 VL - 334 IS - 11 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02347-6/ DO - 10.1016/S1631-073X(02)02347-6 LA - en ID - CRMATH_2002__334_11_1011_0 ER -
%0 Journal Article %A Farb, Benson %A Shalen, Peter B. %T Real-analytic, volume-preserving actions of lattices on 4-manifolds %J Comptes Rendus. Mathématique %D 2002 %P 1011-1014 %V 334 %N 11 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02347-6/ %R 10.1016/S1631-073X(02)02347-6 %G en %F CRMATH_2002__334_11_1011_0
Farb, Benson; Shalen, Peter B. Real-analytic, volume-preserving actions of lattices on 4-manifolds. Comptes Rendus. Mathématique, Tome 334 (2002) no. 11, pp. 1011-1014. doi : 10.1016/S1631-073X(02)02347-6. http://www.numdam.org/articles/10.1016/S1631-073X(02)02347-6/
[1] Bounded cohomology of lattices in higher rank Lie groups, J. European Math. Soc., Volume 1 (1999) no. 2, pp. 199-235
[2] Real-analytic actions of lattices, Invent. Math., Volume 135 (1998) no. 2, pp. 273-296
[3] B. Farb, P. Shalen, Some remarks on symplectic actions of discrete groups, in preparation
[4] The existence of periodic points, Ann. of Math., Volume 57 (1953) no. 2, pp. 229-230
[5] Sur les Groupes Engendrés par des Difféomorphismes Proches de l'Identité, Bol. Soc. Bras. Mat., Volume 24 (1993) no. 2, pp. 137-178
[6] Actions de réseaux sur le cercle, Invent. Math., Volume 137 (1999) no. 1, pp. 199-231
[7] Introduction to Lie Algebras and Representation Theory, GTM 9, Springer-Verlag, 1972
[8] Large groups actions on manifolds, Proc. I.C.M., Berlin, 1998, Doc. Math., Extra Vol. II, 1998, pp. 371-380
[9] Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, 1991
[10] L. Polterovich, Growth of maps, distortion in groups and symplectic geometry, Preprint, November 2001
[11] On nilpotent groups of real analytic diffeomorphisms of the torus, C. R. Acad. Sci. Paris, Volume 331 (2000) no. 1, pp. 317-322
[12] D. Witte, Introduction to arithmetic groups, Preprint, October 2001
[13] Arithmetic groups of higher -rank cannot act on 1-manifolds, Proc. Amer. Math. Soc., Volume 122 (1994) no. 2, pp. 333-340
[14] Actions of semisimple groups and discrete subgroups, Proc. I.C.M., Berkeley, 1986, pp. 1247-1258
[15] Ergodic Theory and Semisimple Groups, Monographs in Math., 81, Birkhäuser, 1984
Cité par Sources :