Real-analytic, volume-preserving actions of lattices on 4-manifolds
[Actions analytiques réelles, conservant le volume, de réseaux sur les variétés de dimension 4]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 11, pp. 1011-1014.

Soit Γ un réseau dans un groupe de Lie linéaire simple, dont le rang rationnel est supérieur ou égal à 7, et soit M une variété fermée de dimension 4 dont la caractéristique d'Euler–Poincaré est non nulle. Nous montrons que toute action analytique réelle de Γ sur M, qui conserve le volume, se factorise à travers l'action d'un groupe fini.

We prove that if Γ is a lattice of Q-rank at least 7 in a simple linear Lie group, then any real-analytic, volume-preserving action of Γ on a closed 4-manifold of nonzero Euler characteristic factors through a finite group action.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02347-6
Farb, Benson 1 ; Shalen, Peter B. 2

1 Dept. of Mathematics, University of Chicago, 5734 University Ave., Chicago, IL 60637, USA
2 Dept. of Mathematics, University of Illinois at Chicago, Chicago, IL 60680, USA
@article{CRMATH_2002__334_11_1011_0,
     author = {Farb, Benson and Shalen, Peter B.},
     title = {Real-analytic, volume-preserving actions of lattices on 4-manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1011--1014},
     publisher = {Elsevier},
     volume = {334},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02347-6},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02347-6/}
}
TY  - JOUR
AU  - Farb, Benson
AU  - Shalen, Peter B.
TI  - Real-analytic, volume-preserving actions of lattices on 4-manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 1011
EP  - 1014
VL  - 334
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02347-6/
DO  - 10.1016/S1631-073X(02)02347-6
LA  - en
ID  - CRMATH_2002__334_11_1011_0
ER  - 
%0 Journal Article
%A Farb, Benson
%A Shalen, Peter B.
%T Real-analytic, volume-preserving actions of lattices on 4-manifolds
%J Comptes Rendus. Mathématique
%D 2002
%P 1011-1014
%V 334
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02347-6/
%R 10.1016/S1631-073X(02)02347-6
%G en
%F CRMATH_2002__334_11_1011_0
Farb, Benson; Shalen, Peter B. Real-analytic, volume-preserving actions of lattices on 4-manifolds. Comptes Rendus. Mathématique, Tome 334 (2002) no. 11, pp. 1011-1014. doi : 10.1016/S1631-073X(02)02347-6. http://www.numdam.org/articles/10.1016/S1631-073X(02)02347-6/

[1] Burger, M.; Monod, N. Bounded cohomology of lattices in higher rank Lie groups, J. European Math. Soc., Volume 1 (1999) no. 2, pp. 199-235

[2] Farb, B.; Shalen, P. Real-analytic actions of lattices, Invent. Math., Volume 135 (1998) no. 2, pp. 273-296

[3] B. Farb, P. Shalen, Some remarks on symplectic actions of discrete groups, in preparation

[4] Fuller, F.B. The existence of periodic points, Ann. of Math., Volume 57 (1953) no. 2, pp. 229-230

[5] Ghys, E. Sur les Groupes Engendrés par des Difféomorphismes Proches de l'Identité, Bol. Soc. Bras. Mat., Volume 24 (1993) no. 2, pp. 137-178

[6] Ghys, E. Actions de réseaux sur le cercle, Invent. Math., Volume 137 (1999) no. 1, pp. 199-231

[7] Humphreys, J. Introduction to Lie Algebras and Representation Theory, GTM 9, Springer-Verlag, 1972

[8] Labourie, F. Large groups actions on manifolds, Proc. I.C.M., Berlin, 1998, Doc. Math., Extra Vol. II, 1998, pp. 371-380

[9] Margulis, G. Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, 1991

[10] L. Polterovich, Growth of maps, distortion in groups and symplectic geometry, Preprint, November 2001

[11] Rebelo, J. On nilpotent groups of real analytic diffeomorphisms of the torus, C. R. Acad. Sci. Paris, Volume 331 (2000) no. 1, pp. 317-322

[12] D. Witte, Introduction to arithmetic groups, Preprint, October 2001

[13] Witte, D. Arithmetic groups of higher Q-rank cannot act on 1-manifolds, Proc. Amer. Math. Soc., Volume 122 (1994) no. 2, pp. 333-340

[14] Zimmer, R. Actions of semisimple groups and discrete subgroups, Proc. I.C.M., Berkeley, 1986, pp. 1247-1258

[15] Zimmer, R. Ergodic Theory and Semisimple Groups, Monographs in Math., 81, Birkhäuser, 1984

Cité par Sources :