On désigne par le produit d'une infinité dénombrable de copies de l'espace . Une mesure borélienne de masse finie sur l'espace topologique de dimension infinie et unitarisante pour la représentation canonique de l'algèbre de Heisenberg de dimension infinie est une mesure gaussienne sur .
Let be the infinite product of countably many copies of . A Borelian probability measure on the infinite dimensional topological space which is unitarizing for the canonical representation of the infinite dimensional Heisenberg algebra is a Gaussian measure on .
Accepté le :
Publié le :
@article{CRMATH_2002__334_9_787_0, author = {Airault, H\'el\`ene}, title = {Mesure unitarisante : alg\`ebre de {Heisenberg,} alg\`ebre de {Virasoro}}, journal = {Comptes Rendus. Math\'ematique}, pages = {787--792}, publisher = {Elsevier}, volume = {334}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02331-2}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02331-2/} }
TY - JOUR AU - Airault, Hélène TI - Mesure unitarisante : algèbre de Heisenberg, algèbre de Virasoro JO - Comptes Rendus. Mathématique PY - 2002 SP - 787 EP - 792 VL - 334 IS - 9 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02331-2/ DO - 10.1016/S1631-073X(02)02331-2 LA - fr ID - CRMATH_2002__334_9_787_0 ER -
%0 Journal Article %A Airault, Hélène %T Mesure unitarisante : algèbre de Heisenberg, algèbre de Virasoro %J Comptes Rendus. Mathématique %D 2002 %P 787-792 %V 334 %N 9 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02331-2/ %R 10.1016/S1631-073X(02)02331-2 %G fr %F CRMATH_2002__334_9_787_0
Airault, Hélène. Mesure unitarisante : algèbre de Heisenberg, algèbre de Virasoro. Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 787-792. doi : 10.1016/S1631-073X(02)02331-2. http://www.numdam.org/articles/10.1016/S1631-073X(02)02331-2/
[1] Unitarizing probability measures for representations of Virasoro algebra, J. Math. Pures Appl., Volume 80 (2001) no. 6, pp. 627-667
[2] On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math., Volume XIV (1961), pp. 187-214
[3] A.A. Kirillov, Introduction to the Theory of Representations and Noncommutative Harmonic Analysis, in: A.A. Kirillov (Ed.), Representation Theory and Noncommutative Harmonic Analysis I, Encyclopedia of Mathematics, Springer-Verlag, p. 125
[4] P. Malliavin, H. Airault, L. Kay, G. Letac, Integration and probability, in: Gaussian Sobolev Spaces and Stochastic Calculus of Variations, Graduate Texts in Math., Vol. 157, Springer-Verlag, Chapitre V, pp. 235–237
[5] Yu.A. Neretin, II. Representations of Virasoro and Affine Lie Algebras, in: A.A. Kirillov (Ed.), Representation Theory and Noncommutative Harmonic Analysis I, Encyclopedia of Mathematics, Springer-Verlag, p. 177
[6] Categories of Symmetries and Infinite-Dimensional Groups, London Math. Soc. Monographs (NS), 16, Clarendon Press, Oxford, 1996
[7] Probability Measures on Metric Spaces, Academic Press, New York, 1967
[8] Die Eindeutigkeit der Schrodingerschen Operatoren, Math. Ann., Volume 104 (1931), pp. 570-578
Cité par Sources :