On donne une nouvelle approche de l'inégalité de Santaló en combinant l'interpolation complexe et la généralisation de l'inégalité de Prékopa obtenue par Berntdsson.
A new approach to Santaló's inequality on is obtained by combining complex interpolation and Berndtsson's generalization of Prékopa's inequality.
Accepté le :
Publié le :
@article{CRMATH_2002__334_9_767_0, author = {Cordero-Erausquin, Dario}, title = {Santal\'o's inequality on $ \mathbb{C}^{n}$ by complex interpolation}, journal = {Comptes Rendus. Math\'ematique}, pages = {767--772}, publisher = {Elsevier}, volume = {334}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02328-2}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02328-2/} }
TY - JOUR AU - Cordero-Erausquin, Dario TI - Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation JO - Comptes Rendus. Mathématique PY - 2002 SP - 767 EP - 772 VL - 334 IS - 9 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02328-2/ DO - 10.1016/S1631-073X(02)02328-2 LA - en ID - CRMATH_2002__334_9_767_0 ER -
%0 Journal Article %A Cordero-Erausquin, Dario %T Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation %J Comptes Rendus. Mathématique %D 2002 %P 767-772 %V 334 %N 9 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02328-2/ %R 10.1016/S1631-073X(02)02328-2 %G en %F CRMATH_2002__334_9_767_0
Cordero-Erausquin, Dario. Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation. Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 767-772. doi : 10.1016/S1631-073X(02)02328-2. http://www.numdam.org/articles/10.1016/S1631-073X(02)02328-2/
[1] Interpolation Spaces. An Introduction, Springer, Berlin, 1976
[2] Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions, Math. Ann., Volume 312 (1998), pp. 785-792
[3] An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990
[4] On the Blaschke–Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93
[5] On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), Volume 34 (1973), pp. 335-343
[6] Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugal Math., Volume 8 (1949), pp. 155-1961
Cité par Sources :