Singular sets of Sobolev functions
[Ensembles singuliers des fonctions de Sobolev]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 7, pp. 539-544.

Nous sommes intéressés à trouver des fonctions de Sobolev dont l'ensemble des singularités est « grand ». Étant donné N,k, 1<p<∞, kp<N, pour chaque sous-ensemble A compact de N , dont la « box-dimension » supérieure est plus petite que Nkp, nous construisons une fonction de Sobolev uW k,p ( N ) qui est singulière précisément sur A. Nous introduisons les notions de dimensions singulières inférieure et supérieure de l'espace de Sobolev, et montrons que ses valeurs sont Nkp.

We are interested in finding Sobolev functions with “large” singular sets. Given N,k, 1<p<∞, kp<N, for any compact subset A of N , such that its upper box dimension is less than Nkp, we construct a Sobolev function uW k,p ( N ) which is singular precisely on A. We introduce the notions of lower and upper singular dimensions of Sobolev space, and show that both are equal to Nkp.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02316-6
Žubrinić, Darko 1

1 Department of Applied Mathematics, Faculty of Electrical Engineering, Unska 3, 10000 Zagreb, Croatia
@article{CRMATH_2002__334_7_539_0,
     author = {\v{Z}ubrini\'c, Darko},
     title = {Singular sets of {Sobolev} functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {539--544},
     publisher = {Elsevier},
     volume = {334},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02316-6},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02316-6/}
}
TY  - JOUR
AU  - Žubrinić, Darko
TI  - Singular sets of Sobolev functions
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 539
EP  - 544
VL  - 334
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02316-6/
DO  - 10.1016/S1631-073X(02)02316-6
LA  - en
ID  - CRMATH_2002__334_7_539_0
ER  - 
%0 Journal Article
%A Žubrinić, Darko
%T Singular sets of Sobolev functions
%J Comptes Rendus. Mathématique
%D 2002
%P 539-544
%V 334
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02316-6/
%R 10.1016/S1631-073X(02)02316-6
%G en
%F CRMATH_2002__334_7_539_0
Žubrinić, Darko. Singular sets of Sobolev functions. Comptes Rendus. Mathématique, Tome 334 (2002) no. 7, pp. 539-544. doi : 10.1016/S1631-073X(02)02316-6. http://www.numdam.org/articles/10.1016/S1631-073X(02)02316-6/

[1] Adams, D.R.; Hedberg, L.I. Function Spaces and Potential Theory, Springer-Verlag, 1996

[2] Aronszajn, N.; Smith, K.T. Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble), Volume 13 (1956), pp. 125-185

[3] Bagby, T.; Ziemer, W. Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc., Volume 194 (1974), pp. 129-148

[4] Calderón, A.P. Lebesgue spaces of differentiable functions and distributions, Partial Differential Equations, Proc. Sympos. Pure Math., 4, American Mathematical Society, Providence, RI, 1961, pp. 33-49

[5] Deny, J. Les potentiels d'energie finie, Acta Math., Volume 82 (1950), pp. 107-183

[6] Deny, J.; Lions, J.L. Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble), Volume 5 (1953–1954), pp. 305-370

[7] Falconer, K.J. Fractal Geometry, Wiley, New York, 1990

[8] Federer, H. Geometric Measure Theory, Springer-Verlag, 1969

[9] Fuglede, B. Extremal length and functional completion, Acta Math., Volume 98 (1957), pp. 171-219

[10] Fuglede, B. On generalized potentials of functions in the Lebesgue classes, Math. Scand., Volume 8 (1960), pp. 287-304

[11] Grillot, M. Prescribed singular submanifolds of some quasilinear elliptic equations, Nonlinear Anal., Volume 34 (1998), pp. 839-856

[12] Havin, V.P.; Mazya, V.G. Use of (p,l)-capacity in problems of the theory of exceptional sets, Mat. Sb., Volume 90 (1973) no. 132, pp. 558-591 Math. USSR-Sb. 19 (1973) 547–580

[13] Heinonen, J.; Kilpeläinen, T.; Martio, O. Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993

[14] Jaffard, S.; Meyer, Y. Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc., Volume 123 (1996) no. 587

[15] Keesling, J. Hausdorff dimension, Topology Proc., Volume 11 (1986) no. 2, pp. 349-383

[16] Kilpeläinen, T. Singular solutions to p-Laplacian type equations, Ark. Mat., Volume 37 (1999), pp. 275-289

[17] Korkut, L.; Pašić, M.; Žubrinić, D. Some qualitative properties of solutions of quasilinear elliptic equations and applications, J. Differential Equations, Volume 170 (2001), pp. 247-280

[18] Malý, J.; Ziemer, W.P. Fine Regularity of Solutions of Elliptic Partial Differential Equations, American Mathematical Society, 1997

[19] Meyers, N.G. Continuity properties of potentials, Duke Math. J., Volume 42 (1975), pp. 157-166

[20] Mou, L. Removability of singular sets of harmonic maps, Arch. Rational Mech. Anal., Volume 127 (1994), pp. 199-217

[21] Reshetnyak, Yu.G. On the concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Zh., Volume X (1969) no. 5, pp. 1108-1138 (in Russian); Siberian Math. J. 13 (1969) 818–842

[22] Serrin, J. Isolated singularities of solutions of quasi-linear equations, Acta Math., Volume 113 (1965), pp. 219-240

[23] Stein, E.M. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970

[24] Veron, L. Singularities of Solutions of Second Order Quasilinear Equations, Addison-Wesley–Longman, 1996

[25] Ziemer, W.P. Weakly Differentiable Functions; Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Math., Springer-Verlag, 1989

[26] Žubrinić, D. Generating singularities of solutions of quasilinear elliptic equations, J. Math. Anal. Appl., Volume 244 (2000), pp. 10-16

Cité par Sources :