Elliptic equations in dimension three: a conjecture of H. Brezis
[Equations elliptiques en dimension 3 : une conjecture de H. Brezis]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 8, pp. 643-647.

On étudie l'existence de solutions minimisantes à une EDP elliptique à croissance de Sobolev critique sur des domaines de l'espace euclidien de dimension trois. On résout en particulier une conjecture de H. Brezis sur le sujet. Les questions analogues en dimensions plus grandes étaient parfaitement comprises depuis des travaux de H. Brezis et L. Nirenberg.

We study the existence of minimizing solutions for an elliptic equation involving critical Sobolev exponent on domains of the three-dimensional Euclidean space. We solve in particular by the affirmative a conjecture of Haı̈m Brezis. The similar situation in higher dimensions was completely understood thanks to previous works by H. Brezis and L. Nirenberg.

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02289-6
Druet, Olivier 1

1 Département de mathématiques, Université de Cergy-Pontoise, site de Saint-Martin, 2, avenue Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France
@article{CRMATH_2002__334_8_643_0,
     author = {Druet, Olivier},
     title = {Elliptic equations in dimension three: a conjecture of {H.} {Brezis}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {643--647},
     publisher = {Elsevier},
     volume = {334},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02289-6},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02289-6/}
}
TY  - JOUR
AU  - Druet, Olivier
TI  - Elliptic equations in dimension three: a conjecture of H. Brezis
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 643
EP  - 647
VL  - 334
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02289-6/
DO  - 10.1016/S1631-073X(02)02289-6
LA  - en
ID  - CRMATH_2002__334_8_643_0
ER  - 
%0 Journal Article
%A Druet, Olivier
%T Elliptic equations in dimension three: a conjecture of H. Brezis
%J Comptes Rendus. Mathématique
%D 2002
%P 643-647
%V 334
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02289-6/
%R 10.1016/S1631-073X(02)02289-6
%G en
%F CRMATH_2002__334_8_643_0
Druet, Olivier. Elliptic equations in dimension three: a conjecture of H. Brezis. Comptes Rendus. Mathématique, Tome 334 (2002) no. 8, pp. 643-647. doi : 10.1016/S1631-073X(02)02289-6. http://www.numdam.org/articles/10.1016/S1631-073X(02)02289-6/

[1] Atkinson, F.V.; Peletier, L.A. Elliptic equations with nearly critical growth, J. Differential Equations, Volume 70 (1987), pp. 349-365

[2] Brezis, H. Elliptic equations with limiting Sobolev exponents. The impact of topology, Comm. Pure Appl. Math., Volume 39 (1986), pp. 17-39

[3] Brezis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983), pp. 437-477

[4] Brezis, H.; Peletier, L.A. Asymptotics for elliptic equations involving critical Sobolev exponents (Modica, L.; Colombini, F.; Marino, A.; Spagnolo, S., eds.), Partial Differential Equations and the Calculus of Variations, Birkhäuser, Basel, 1989

[5] Chang, S.Y.A.; Yang, P.C. Compactness of isospectral conformal metrics in S3, Comment. Math. Helv., Volume 64 (1989), pp. 363-374

[6] O. Druet, Optimal Sobolev inequalities and extremal functions, The three-dimensional case, Indiana Univ. Math. J. (to appear)

[7] Han, Z.C. Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991) no. 2, pp. 159-174

[8] Hebey, E. Asymptotic behavior of positive solutions of quasilinear elliptic equations with critical Sobolev growth, J. Differential Integral Equations, Volume 13 (2000), pp. 1073-1080

[9] Hebey, E.; Vaugon, M. The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds, Duke Math. J., Volume 79 (1995), pp. 235-279

[10] Hebey, E.; Vaugon, M. From best constants to critical functions, Math. Z., Volume 237 (2001), pp. 737-767

[11] Li, Y.Y. Prescribing scalar curvature on Sn and related problems, part I, J. Differential Equations, Volume 120 (1995), pp. 319-420

[12] Lions, P.-L. The concentration-compactness principle in the calculus of variations. The limit case. Part I, Rev. Mat. Iberoamericana, Volume 1 (1985) no. 1, pp. 145-201

[13] Robert, F. Asymptotic behaviour of a nonlinear elliptic equation with critical Sobolev exponent, Adv. Differential Equations, Volume 6 (2001) no. 7, pp. 821-846

[14] Schoen, R. Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984), pp. 479-495

[15] Schoen, R.; Zhang, D. Prescribed scalar curvature on the n-sphere, Calc. Var., Volume 4 (1996), pp. 1-25

Cité par Sources :