Dans les familles non triviales d'applications unimodales presque tout paramètre a de bonnes propriétés statistiques. Ceci découle de la structure d'espaces de Banach d'applications unimodales analytiques et de la relation de phase-paramètre des bifurcations génériques.
In non-trivial analytic families of unimodal maps, the dynamics of almost every parameter has a good stochastic description.
Révisé le :
Publié le :
@article{CRMATH_2002__334_6_483_0, author = {Avila, Artur}, title = {Bifurcations d'applications unimodales}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--488}, publisher = {Elsevier}, volume = {334}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02282-3}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02282-3/} }
TY - JOUR AU - Avila, Artur TI - Bifurcations d'applications unimodales JO - Comptes Rendus. Mathématique PY - 2002 SP - 483 EP - 488 VL - 334 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02282-3/ DO - 10.1016/S1631-073X(02)02282-3 LA - fr ID - CRMATH_2002__334_6_483_0 ER -
Avila, Artur. Bifurcations d'applications unimodales. Comptes Rendus. Mathématique, Tome 334 (2002) no. 6, pp. 483-488. doi : 10.1016/S1631-073X(02)02282-3. http://www.numdam.org/articles/10.1016/S1631-073X(02)02282-3/
[1] A. Avila, Bifurcations of unimodal maps: the topologic and metric picture, Thèse, IMPA, 2001, disponible à http://www.math.sunysb.edu/~artur/
[2] A. Avila, M. Lyubich, W. de Melo, Regular or stochastic dynamics in real analytic families of unimodal maps, Prépublication, 2001, disponible à http://www.math.sunysb.edu/~artur/. Soumis pour publication
[3] A. Avila, C.G. Moreira, Statistical properties of unimodal maps: the quadratic family, Prépublication, 2001, disponible à . Soumis pour publication | arXiv
[4] A. Avila, C.G. Moreira, Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative, Prépublication, 2001, disponible à . Soumis pour publication | arXiv
[5] O.S. Kozlovski, Structural stability in one-dimensional dynamics, Thèse, Univ. Amsterdam, 1998
[6] Dynamics of quadratic polynomials, I–II, Acta Math., Volume 178 (1997), pp. 185-297
[7] Dynamics of quadratic polynomials, III. Parapuzzle and SBR measures, Astérisque, Volume 261 (2000), pp. 173-200
[8] M. Lyubich, Almost every real quadratic map is either regular or stochastic, Ann. Math. (à paraı̂tre)
[9] One-Dimensional Dynamics, Springer, 1993
Cité par Sources :