Nonlinear “double porosity” type model
[Un modèle non linéaire de type double porosité]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 5, pp. 435-440.

On étudie un problème variationnel inf uH 1 (Ω) Ω {a ϵ |u ϵ | m +g|u ϵ | m - mf ϵ u ϵ }dx dans un ouvert borné Ω= (ϵ) ¯ (ϵ) avec une microstructure (ϵ) non périodique ; aε=aε(x) vaut 1 dans (ϵ) et sup x (ϵ) a ϵ (x)0 lorsque ε→0. Un modèle homogénéisé est construit.

We consider a variational problem inf uH 1 (Ω) Ω {a ϵ |u ϵ | m +g|u ϵ | m - mf ϵ u ϵ }dx in a bounded domain Ω= (ϵ) ¯ (ϵ) with a microstructure (ϵ) which is not in general periodic; aε=aε(x) is of order 1 in (ϵ) and sup x (ϵ) a ϵ (x)0 as ε→0. A homogenized model is constructed.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02269-0
Pankratov, Leonid 1 ; Piatnitski, Andrey 2, 3

1 Département de mathématiques, Institut des Basses Températures (FTINT), 47, av. Lénine, 61103, Kharkov, Ukraine
2 Narvik University College, HiN, 8505, Narvik, Norway
3 Lebedev Physical Institute RAS, 53, Leninski prospect, 117333, Moscow, Russia
@article{CRMATH_2002__334_5_435_0,
     author = {Pankratov, Leonid and Piatnitski, Andrey},
     title = {Nonlinear {\textquotedblleft}double porosity{\textquotedblright} type model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {435--440},
     publisher = {Elsevier},
     volume = {334},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02269-0},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02269-0/}
}
TY  - JOUR
AU  - Pankratov, Leonid
AU  - Piatnitski, Andrey
TI  - Nonlinear “double porosity” type model
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 435
EP  - 440
VL  - 334
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02269-0/
DO  - 10.1016/S1631-073X(02)02269-0
LA  - en
ID  - CRMATH_2002__334_5_435_0
ER  - 
%0 Journal Article
%A Pankratov, Leonid
%A Piatnitski, Andrey
%T Nonlinear “double porosity” type model
%J Comptes Rendus. Mathématique
%D 2002
%P 435-440
%V 334
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02269-0/
%R 10.1016/S1631-073X(02)02269-0
%G en
%F CRMATH_2002__334_5_435_0
Pankratov, Leonid; Piatnitski, Andrey. Nonlinear “double porosity” type model. Comptes Rendus. Mathématique, Tome 334 (2002) no. 5, pp. 435-440. doi : 10.1016/S1631-073X(02)02269-0. http://www.numdam.org/articles/10.1016/S1631-073X(02)02269-0/

[1] Acerbi, E.; Chiadò Piat, V.; Dal Maso, G.; Percivale, D. An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., Volume 18 (1992), pp. 481-496

[2] Arbogast, T.; Douglas, J.; Hornung, U. Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Appl. Math., Volume 21 (1990), pp. 823-826

[3] Bourgeat, A.; Goncharenko, M.; Panfilov, M.; Pankratov, L. A general double porosity model, C. R. Acad. Sci. Paris, Série IIb, Volume 327 (1999), pp. 1245-1250

[4] Bourgeat, A.; Mikelic, A.; Piatnitski, A. Modèle de double porosité aléatoire, C. R. Acad. Sci. Paris, Série I, Volume 327 (1998), pp. 99-104

[5] Braides, A.; Defranceschi, A. Homogenization of Multiple Integrals, Oxford Lecture Ser. Math. Appl., 12, Clarendon Press, Oxford, 1998

[6] Cioranescu, D.; Saint Jean Paulin, J. Homogenization of Reticulated Structures, Appl. Math. Sci., 136, Springer-Verlag, New York, 1999

[7] Homogenization and Porous Media (Hornung, U., ed.), Interdisciplinary Appl. Math., 6, Springer-Verlag, New York, 1997

[8] Khruslov, E. Asymptotic behavior of the solutions of the second boundary value problem in the case of the refinement of the boundary of the domain, Mat. Sb., Volume 106 (1978), pp. 604-621

[9] Khruslov, E. Averaged models of diffusion in fractured–porous media, Dokl. Akad. Nauk SSSR, Volume 309 (1989), pp. 332-335 English translation in Soviet Phys. Dokl. 34 (1989) 980–981

[10] Khruslov, E.; Pankratov, L. Homogenization of boundary value problems for the Ginzburg–Landau equation in weakly connected domains (Marchenko, V., ed.), Spectral Theory and Related Topics, 19, American Mathematical Society, Providence, RI, 1994, pp. 233-268

[11] Ladyzhenskaya, O.; Ural'tseva, N. Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968

[12] Pankratov, L. Homogenization of nonlinear Neumann elliptic and parabolic problems, Homogenization and Applications to Material Sciences, Math. Sci. Appl., 9, 1997, pp. 341-353

[13] Samarskii, A.; Galaktionov, V.; Kurdyumov, S.; Mikhailov, A. Blow-up in Quasilinear Parabolic Equations, De Gruyter, Berlin, 1995

[14] Zhikov, V.; Kozlov, S.; Oleinik, O. Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, New York, 1994

Cité par Sources :