On propose un schéma numérique « équilibre » pour le système de Goldstein–Taylor monodimensionnel possédant toutes les propriétés de stabilité du problème continu et qui fonctionne dans les regimes raréfiés et diffusifs.
We propose here a well-balanced numerical scheme for the one-dimensional Goldstein–Taylor system which is endowed with all the stability properties inherent to the continuous problem and works in both rarefied and diffusive regimes.
Accepté le :
Publié le :
@article{CRMATH_2002__334_4_337_0, author = {Gosse, Laurent and Toscani, Giuseppe}, title = {An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {337--342}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02257-4}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02257-4/} }
TY - JOUR AU - Gosse, Laurent AU - Toscani, Giuseppe TI - An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations JO - Comptes Rendus. Mathématique PY - 2002 SP - 337 EP - 342 VL - 334 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02257-4/ DO - 10.1016/S1631-073X(02)02257-4 LA - en ID - CRMATH_2002__334_4_337_0 ER -
%0 Journal Article %A Gosse, Laurent %A Toscani, Giuseppe %T An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations %J Comptes Rendus. Mathématique %D 2002 %P 337-342 %V 334 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02257-4/ %R 10.1016/S1631-073X(02)02257-4 %G en %F CRMATH_2002__334_4_337_0
Gosse, Laurent; Toscani, Giuseppe. An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. Comptes Rendus. Mathématique, Tome 334 (2002) no. 4, pp. 337-342. doi : 10.1016/S1631-073X(02)02257-4. http://www.numdam.org/articles/10.1016/S1631-073X(02)02257-4/
[1] D. Amadori, L. Gosse, G. Guerra, Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws, Arch. Rat. Mech. Anal. (to appear). http://www.math.ntnu.no/conservation/2000/050.html
[2] D. Aregba-Driollet, R. Natalini, S.Q. Tang, Diffusive kinetic explicit schemes for nonlinear degenerate parabolic systems, Quaderno IAC 26/2000
[3] M. Arora, Explicit characteristic–based high-resolution algorithms for hyperbolic conservation laws with stiff source terms, Ph.D. thesis, The University of Michigan, 1996, http://hpcc.engin.umich.edu/CFD/users/mohit/html/relaxation.html
[4] Diffusive BGK approximations for nonlinear multidimensional parabolic equations, Indiana Univ. Math. J., Volume 49 (2000), pp. 723-749
[5] Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée, C. R. Acad. Sci. Paris, Volume 247 (1958), pp. 431-433
[6] The Mathematical Theory of Dilute Gases, Appl. Math. Sci., 106, Springer-Verlag, New York, 1994
[7] Scaling limits for the Ruijgrok–Wu model of the Boltzmann equation, Math. Meth. Appl. Sci., Volume 24 (2001), pp. 949-967
[8] A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 339-365
[9] L. Gosse, Localization effects and measure source terms in numerical schemes for balance laws, Math. Comp. posted on November 28, 2001. PII S0025-5718(01)01354-0, to appear in print
[10] A well balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., Volume 33 (1996), pp. 1-16
[11] Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., Volume 21 (1999), pp. 441-454
[12] Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations, SIAM J. Numer. Anal., Volume 35 (1998), pp. 2405-2439
[13] Representation of weak limits and definition of nonconservative products, SIAM J. Math. Anal., Volume 30 (1999), pp. 1309-1342
[14] Diffusive limit for finite velocity Boltzmann kinetic models, Rev. Mat. Iberoamericana, Volume 13 (1997), pp. 473-513
[15] The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Differential Equations, Volume 84 (1990), pp. 129-147
[16] B. Perthame, C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, Preprint, 2001
[17] A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys., Volume 136 (1991), pp. 501-517
[18] Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory, SIAM Rev., Volume 30 (1988) no. 2, pp. 213-255
Cité par Sources :