On établit l'unicité des solutions de viscosité semicontinues classiques du problème de Cauchy des équations d'Hamilton–Jacobi possèdant des Hamiltonien H=H(Du) convexe et Lipschitz continue globale, si la fonction initiale discontinue ϕ(x) est continue à l'extérieur de l'ensemble Γ de mesure zéro et satisfait (). On montre la régularité des solutions discontinues des équations d'Hamilton–Jacobi possédant des Hamiltoniens localement strictement convexes : les solutions discontinues possédant les données initiales continues presque partout et satisfaisant () deviennent Lipschitz continues après un temps fini. On prouve la L1-accessibilité des données initiales et un principe de comparaison. On clarifie aussi l'équivalence des solutions de viscosité semicontinues, des solutions bi-latérales, des L-solutions, des solutions minimax, et des L∞-solutions.
The uniqueness of classical semicontinuous viscosity solutions of the Cauchy problem for Hamilton–Jacobi equations is established for globally Lipschitz continuous and convex Hamiltonian H=H(Du), provided the discontinuous initial value function ϕ(x) is continuous outside a set Γ of measure zero and satisfies
(∗) |
Révisé le :
Publié le :
@article{CRMATH_2002__334_2_113_0, author = {Chen, Gui-Qiang and Su, Bo}, title = {On global discontinuous solutions of {Hamilton{\textendash}Jacobi} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {113--118}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02228-8}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02228-8/} }
TY - JOUR AU - Chen, Gui-Qiang AU - Su, Bo TI - On global discontinuous solutions of Hamilton–Jacobi equations JO - Comptes Rendus. Mathématique PY - 2002 SP - 113 EP - 118 VL - 334 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02228-8/ DO - 10.1016/S1631-073X(02)02228-8 LA - en ID - CRMATH_2002__334_2_113_0 ER -
%0 Journal Article %A Chen, Gui-Qiang %A Su, Bo %T On global discontinuous solutions of Hamilton–Jacobi equations %J Comptes Rendus. Mathématique %D 2002 %P 113-118 %V 334 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02228-8/ %R 10.1016/S1631-073X(02)02228-8 %G en %F CRMATH_2002__334_2_113_0
Chen, Gui-Qiang; Su, Bo. On global discontinuous solutions of Hamilton–Jacobi equations. Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 113-118. doi : 10.1016/S1631-073X(02)02228-8. http://www.numdam.org/articles/10.1016/S1631-073X(02)02228-8/
[1] Discontinuous solutions of deterministic optimal stopping problem, Math. Model. Numer. Anal., Volume 2 (1987), pp. 557-579
[2] Semicontinuous viscosity solutions of Hamilton–Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations, Volume 15 (1990), pp. 1713-1742
[3] Discontinuous solutions in L∞ for Hamilton–Jacobi equations, Chinese Ann. Math., Volume 2 (2000), pp. 165-186
[4] Chen G.-Q., Su B., On discontinuous solutions of Hamilton–Jacobi equations, Preprint, June 2001
[5] Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., Volume 277 (1983), pp. 1-42
[6] A user's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 1-67
[7] Nonvanishing singular parts of measure valued solutions for scalar hyperbolic equations, Comm. Partial Differential Equations, Volume 16 (1991), pp. 221-254
[8] Giga Y., Sato M.H., A level set approach to semicontinuous solutions for Cauchy problems, Preprint, 2001
[9] Wave fronts for Hamilton–Jacobi equations: the general theory for Riemann solutions in , Comm. Math. Phys., Volume 187 (1997), pp. 647-677
[10] Uniqueness of unbounded viscosity solution of Hamilton–Jacobi equations, Indiana Univ. Math. J., Volume 33 (1984), pp. 721-748
[11] Perron's method for Hamilton–Jacobi equations, Duke Math. J., Volume 55 (1987), pp. 368-384
[12] Generalized solutions of nonlinear equations of the first order with several independent variables, II, Mat. Sb. (N.S.), Volume 114 (1967), pp. 108-134 (in Russian)
[13] Generalized Solutions of Hamilton–Jacobi Equations, Research Notes in Math., 69, Pitman, Boston, 1982
[14] Source solutions and asymptotic behavior in conservation laws, J. Differential Equations, Volume 51 (1984), pp. 419-441
[15] Generalized Solutions of First Order PDEs, Birkhäuser, Boston, 1995
Cité par Sources :