Mixed formulations for a class of variational inequalities
[Formulations mixtes pour une classe d'inéquations variationnelles]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 1, pp. 87-92.

Dans cette Note, on se propose d'étendre la méthode des éléments finis mixtes à une classe d'inéquations variationnelles comprenant les problèmes de Signorini et de contact unilatéral en élasticité avec ou sans frottement. L'existence, l'unicité pour les problèmes continu et discret ainsi que les estimations d'erreur sont établies dans un cadre général abstrait. L'application à l'approximation mixte du problème de Signorini permet alors de montrer une convergence d'ordre h3/4.

This Note is an attempt to extend the mixed finite element method to a class of variational inequalities including the problems of Signorini and of unilateral contact in elasticity with or without friction. Existence and uniqueness for the continuous and the discrete problems as well as error estimates are established in a general abstract framework. As a result, the mixed approximation of the Signorini problem is proved to converge with an error bound in h3/4.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02226-4
Slimane, Leila 1 ; Bendali, Abderrahmane 1 ; Laborde, Patrick 2

1 Laboratoire MIP, UMR-CNRS 5640, INSA de Toulouse, 135, Av. de Rangueil, 31077 Toulouse cedex 4, France
2 Laboratoire MIP, UMR-CNRS 5640, Univ. Toulouse 3, 118, Rte de Narbonne, 31062 Toulouse cedex 4, France
@article{CRMATH_2002__334_1_87_0,
     author = {Slimane, Leila and Bendali, Abderrahmane and Laborde, Patrick},
     title = {Mixed formulations for a class of variational inequalities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {87--92},
     publisher = {Elsevier},
     volume = {334},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02226-4},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02226-4/}
}
TY  - JOUR
AU  - Slimane, Leila
AU  - Bendali, Abderrahmane
AU  - Laborde, Patrick
TI  - Mixed formulations for a class of variational inequalities
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 87
EP  - 92
VL  - 334
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02226-4/
DO  - 10.1016/S1631-073X(02)02226-4
LA  - en
ID  - CRMATH_2002__334_1_87_0
ER  - 
%0 Journal Article
%A Slimane, Leila
%A Bendali, Abderrahmane
%A Laborde, Patrick
%T Mixed formulations for a class of variational inequalities
%J Comptes Rendus. Mathématique
%D 2002
%P 87-92
%V 334
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02226-4/
%R 10.1016/S1631-073X(02)02226-4
%G en
%F CRMATH_2002__334_1_87_0
Slimane, Leila; Bendali, Abderrahmane; Laborde, Patrick. Mixed formulations for a class of variational inequalities. Comptes Rendus. Mathématique, Tome 334 (2002) no. 1, pp. 87-92. doi : 10.1016/S1631-073X(02)02226-4. http://www.numdam.org/articles/10.1016/S1631-073X(02)02226-4/

[1] Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods, Springer-Verlag, Berlin, 1991

[2] Brezzi, F.; Hager, W.; Raviart, P.A. Error estimates for the finite element solution of variational inequalities, part II, Numer. Math., Volume 31 (1978), pp. 1-16

[3] Capatina-Papaghiuc, D.; Raynaud, N. Numerical approximation of stiff transmission problems by mixed finite element methods, RAIRO Modèl. Math. Anal. Numér., Volume 32 (1998) no. 5, pp. 611-629

[4] Haslinger J., Mixed formulation of elliptic variational inequalities and its approximation, Appl. Math. 6, 462–475

[5] Kikuchi, N.; Oden, J.T. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988

[6] Robert, J.E.; Thomas, J.-M. Mixed and hybrid methods, Handbook of Numerical Analysis, Vol. II, Finite Element Methods, Part 1, North-Holland, Amsterdam, 1991

[7] Slimane L., Méthodes mixtes et traitement du verrouillage numérique pour la résolution des inéquations variationnelles, Ph.D. thesis, INSA de Toulouse, 2001

[8] Wang, L.; Wang, G. Dual mixed finite element method for contact problem in elasticity, Math. Numer. Sinica, Volume 21 (1999) no. 4

Cité par Sources :