Nous considérons N⩾5, a>0, un ouvert borné régulier de , , et ||u||2=|∇u|22+a|u|22. Nous prouvons qu'il existe α0>0 tel que, pour toute fonction ,
Let N⩾5, a>0, be a smooth bounded domain in , , and ‖u‖2=|∇u|22+a|u|22. We prove there exists an α0>0 such that, for all ,
Publié le :
@article{CRMATH_2002__334_2_105_0, author = {Gir\~ao, Pedro M.}, title = {A sharp inequality for {Sobolev} functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {105--108}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02215-X}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02215-X/} }
TY - JOUR AU - Girão, Pedro M. TI - A sharp inequality for Sobolev functions JO - Comptes Rendus. Mathématique PY - 2002 SP - 105 EP - 108 VL - 334 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02215-X/ DO - 10.1016/S1631-073X(02)02215-X LA - en ID - CRMATH_2002__334_2_105_0 ER -
Girão, Pedro M. A sharp inequality for Sobolev functions. Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 105-108. doi : 10.1016/S1631-073X(02)02215-X. http://www.numdam.org/articles/10.1016/S1631-073X(02)02215-X/
[1] The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa (1991), pp. 9-25
[2] Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., Volume 113 (1993), pp. 318-350
[3] Sobolev inequalities with remainder terms, J. Funct. Anal., Volume 62 (1985), pp. 73-86
[4] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983), pp. 437-477
[5] Chabrowski J., Willem M., Least energy solutions for the critical Neumann problem with a weight, Calc. Var. (to appear)
[6] Problémes de Neumann nonlinéaires sur des variétés Riemannienes, J. Funct. Anal., Volume 57 (1984), pp. 154-207
[7] Costa D.G., Girão P.M., Existence and nonexistence of least energy solutions of the Neumann problem for a semilinear elliptic equation with critical Sobolev exponent and a critical lower-order perturbation (to appear)
[8] The concentration-compactness principle in the calculus of variations, The limit case, Rev. Math. Iberoamericana, Volume 1 (1985) no. 1–2, pp. 145-201 (and 45–120)
[9] Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, Volume 93 (1991), pp. 283-310
[10] Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var., Volume 8 (1999), pp. 109-122
[11] Sharp Sobolev inequalities with interior norms, Calc. Var., Volume 8 (1999), pp. 27-43
Cité par Sources :