A sharp inequality for Sobolev functions
[Une inégalité dans un espace de Sobolev]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 105-108.

Nous considérons N⩾5, a>0, Ω un ouvert borné régulier de N , 2 * =2N N-2, 2 # =2(N-1) N-2 et ||u||2=|∇u|22+a|u|22. Nous prouvons qu'il existe α0>0 tel que, pour toute fonction uH 1 (Ω){0},

S 2 2/N u 2 |u| 2 * 2 1+α 0 |u| 2 # 2 # u·|u| 2 * 2 * /2 .
Cette inégalité implique l'inégalité de Cherrier.

Let N⩾5, a>0, Ω be a smooth bounded domain in N , 2 * =2N N-2, 2 # =2(N-1) N-2 and ‖u2=|∇u|22+a|u|22. We prove there exists an α0>0 such that, for all uH 1 (Ω){0},

S 2 2/N u 2 |u| 2 * 2 1+α 0 |u| 2 # 2 # u·|u| 2 * 2 * /2 .
This inequality implies Cherrier's inequality.

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02215-X
Girão, Pedro M. 1

1 Department of Mathematics, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
@article{CRMATH_2002__334_2_105_0,
     author = {Gir\~ao, Pedro M.},
     title = {A sharp inequality for {Sobolev} functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {105--108},
     publisher = {Elsevier},
     volume = {334},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02215-X},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02215-X/}
}
TY  - JOUR
AU  - Girão, Pedro M.
TI  - A sharp inequality for Sobolev functions
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 105
EP  - 108
VL  - 334
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02215-X/
DO  - 10.1016/S1631-073X(02)02215-X
LA  - en
ID  - CRMATH_2002__334_2_105_0
ER  - 
%0 Journal Article
%A Girão, Pedro M.
%T A sharp inequality for Sobolev functions
%J Comptes Rendus. Mathématique
%D 2002
%P 105-108
%V 334
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02215-X/
%R 10.1016/S1631-073X(02)02215-X
%G en
%F CRMATH_2002__334_2_105_0
Girão, Pedro M. A sharp inequality for Sobolev functions. Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 105-108. doi : 10.1016/S1631-073X(02)02215-X. http://www.numdam.org/articles/10.1016/S1631-073X(02)02215-X/

[1] Adimurthi; Mancini, G. The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa (1991), pp. 9-25

[2] Adimurthi; Pacella, F.; Yadava, S.L. Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., Volume 113 (1993), pp. 318-350

[3] Brezis, H.; Lieb, E. Sobolev inequalities with remainder terms, J. Funct. Anal., Volume 62 (1985), pp. 73-86

[4] Brezis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983), pp. 437-477

[5] Chabrowski J., Willem M., Least energy solutions for the critical Neumann problem with a weight, Calc. Var. (to appear)

[6] Cherrier, P. Problémes de Neumann nonlinéaires sur des variétés Riemannienes, J. Funct. Anal., Volume 57 (1984), pp. 154-207

[7] Costa D.G., Girão P.M., Existence and nonexistence of least energy solutions of the Neumann problem for a semilinear elliptic equation with critical Sobolev exponent and a critical lower-order perturbation (to appear)

[8] Lions, P.-L. The concentration-compactness principle in the calculus of variations, The limit case, Rev. Math. Iberoamericana, Volume 1 (1985) no. 1–2, pp. 145-201 (and 45–120)

[9] Wang, X.J. Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, Volume 93 (1991), pp. 283-310

[10] Wang, Z.Q. Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var., Volume 8 (1999), pp. 109-122

[11] Zhu, M. Sharp Sobolev inequalities with interior norms, Calc. Var., Volume 8 (1999), pp. 27-43

Cité par Sources :