Dans cette Note, nous démontrons que les variétés complètes Kähleriennes quaternioniques de courbure scalaire positive et de dimension 12 appartiennent à la liste d'espaces symétriques donnée par Wolf [12].
We prove that the 12-dimensional complete quaternion-Kähler manifolds with positive scalar curvature belong to the list of symmetric spaces given by Wolf [12].
Accepté le :
Publié le :
@article{CRMATH_2002__334_1_43_0, author = {Herrera, Hayde\'e and Herrera, Rafael}, title = {Classification of positive {quaternion-K\"ahler} $ \mathrm{12}$-manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {43--46}, publisher = {Elsevier}, volume = {334}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02209-4}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02209-4/} }
TY - JOUR AU - Herrera, Haydeé AU - Herrera, Rafael TI - Classification of positive quaternion-Kähler $ \mathrm{12}$-manifolds JO - Comptes Rendus. Mathématique PY - 2002 SP - 43 EP - 46 VL - 334 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02209-4/ DO - 10.1016/S1631-073X(02)02209-4 LA - en ID - CRMATH_2002__334_1_43_0 ER -
%0 Journal Article %A Herrera, Haydeé %A Herrera, Rafael %T Classification of positive quaternion-Kähler $ \mathrm{12}$-manifolds %J Comptes Rendus. Mathématique %D 2002 %P 43-46 %V 334 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02209-4/ %R 10.1016/S1631-073X(02)02209-4 %G en %F CRMATH_2002__334_1_43_0
Herrera, Haydeé; Herrera, Rafael. Classification of positive quaternion-Kähler $ \mathrm{12}$-manifolds. Comptes Rendus. Mathématique, Tome 334 (2002) no. 1, pp. 43-46. doi : 10.1016/S1631-073X(02)02209-4. http://www.numdam.org/articles/10.1016/S1631-073X(02)02209-4/
[1] Complete hyper-Kähler 4n-manifolds with a local tri-Hamiltonian -action, Math. Ann., Volume 314 (1999) no. 3, pp. 505-528
[2] Quaternionic Kähler manifolds of cohomogeneity one, Internat. J. Math., Volume 10 (1999) no. 5, pp. 541-570
[3] Herrera R., Ph.D. thesis, Oxford, 1997
[4] Herrera H., Herrera R., -genus on non-spin manifolds with S1 actions and the classification of positive quaternion-Kähler 12-manifolds, IHÉS Preprint, 2001
[5] Herrera H., Herrera R., Elliptic genus on non-spin manifolds, Preprint, 2001
[6] Kählerian twistor spaces, Proc. London Math. Soc., Volume 43 (1981) no. 3, pp. 133-150
[7] Fano manifolds, contact structures, and quaternionic geometry, Internat. J. Math., Volume 6 (1995) no. 3, pp. 419-437
[8] Strong rigidity of positive quaternion-Kähler manifolds, Invent. Math., Volume 118 (1994), pp. 109-132
[9] A note on quaternion-Kähler manifolds, Internat. J. Math., Volume 11 (2000) no. 2, pp. 279-283
[10] Eight-dimensional quaternionic Kähler manifolds with positive scalar curvature, J. Differential Geometry, Volume 33 (1991), pp. 363-378
[11] Quaternionic Kähler manifolds, Invent. Math., Volume 67 (1982), pp. 143-171
[12] Complex homogeneous contact structures and quaternionic symmetric spaces, J. Math. Mech., Volume 14 (1965), pp. 1033-1047
Cité par Sources :