Probabilités
Diffraction et mesure de Palm des processus ponctuels
Comptes Rendus. Mathématique, Tome 336 (2003) no. 1, pp. 57-62.

En faisant appel à la notion de mesure de Palm, nous établissons l'existence de la mesure de diffraction pour tout processus ponctuel stationnaire et ergodique. Nous obtenons des caractérisations précises de ces mesures dans le cas de processus particuliers : sous-ensembles aléatoires de d , ensembles obtenus par la méthode « cut-and-project ».

Using the notion of Palm measure, we prove the existence of the diffraction measure of all stationary and ergodic point processes. We get precise expressions of those measures in the case of specific processes: stochastic subsets of d , sets obtained by the “cut-and-project” method.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)00029-8
Gouéré, Jean-Baptiste 1

1 LaPCS, Université Claude Bernard Lyon I, bâtiment recherche [B], 50, avenue Tony-Garnier, Domaine de Gerland, 69366 Lyon cedex 07, France
@article{CRMATH_2003__336_1_57_0,
     author = {Gou\'er\'e, Jean-Baptiste},
     title = {Diffraction et mesure de {Palm} des processus ponctuels},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {57--62},
     publisher = {Elsevier},
     volume = {336},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-073X(02)00029-8},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)00029-8/}
}
TY  - JOUR
AU  - Gouéré, Jean-Baptiste
TI  - Diffraction et mesure de Palm des processus ponctuels
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 57
EP  - 62
VL  - 336
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)00029-8/
DO  - 10.1016/S1631-073X(02)00029-8
LA  - fr
ID  - CRMATH_2003__336_1_57_0
ER  - 
%0 Journal Article
%A Gouéré, Jean-Baptiste
%T Diffraction et mesure de Palm des processus ponctuels
%J Comptes Rendus. Mathématique
%D 2003
%P 57-62
%V 336
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)00029-8/
%R 10.1016/S1631-073X(02)00029-8
%G fr
%F CRMATH_2003__336_1_57_0
Gouéré, Jean-Baptiste. Diffraction et mesure de Palm des processus ponctuels. Comptes Rendus. Mathématique, Tome 336 (2003) no. 1, pp. 57-62. doi : 10.1016/S1631-073X(02)00029-8. http://www.numdam.org/articles/10.1016/S1631-073X(02)00029-8/

[1] M. Baake, Diffraction of weighted lattice subsets, Preprint, 2002

[2] Baake, M.; Höffe, M. Diffraction of random tilings: some rigorous results, J. Statist. Phys., Volume 99 (2000) no. 1–2, pp. 216-261

[3] Baake, M.; Moody, R.V. Diffractive point sets with entropy, J. Phys. A, Volume 31 (1998) no. 45, pp. 9023-9039

[4] Burton, R.; Pemantle, R. Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Probab., Volume 21 (1993) no. 3, pp. 1329-1371

[5] Cornfeld, I.P.; Fomin, S.V.; Sinaı̆, Ya.G. Ergodic Theory, Springer-Verlag, New York, 1982 (Translated from Russian by A.B. Sosinskiı̆)

[6] Fisher, M.E.; Stephenson, J. Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers, Phys. Rev., Volume 132 (1963) no. 2, pp. 1411-1431

[7] Hof, A. Diffraction by aperiodic structures at high temperatures, J. Phys. A, Volume 28 (1995) no. 1, pp. 57-62

[8] Hof, A. On diffraction by aperiodic structures, Comm. Math. Phys., Volume 169 (1995) no. 1, pp. 25-43

[9] Kallenberg, O. Random Measures, Akademie-Verlag, Berlin, 1986

[10] Kenyon, R. Local statistics of lattice dimers, Ann. Inst. H. Poincaré Probab. Statist., Volume 33 (1997) no. 5, pp. 591-618

[11] Meyer, Y. Quasicrystals, Diophantine approximation and algebraic numbers, Beyond Quasicrystals, Les Houches, 1994, Springer, Berlin, 1995, pp. 3-16

[12] Møller, J. Lectures on Random Voronoı̆ Tessellations, Springer-Verlag, New York, 1994

[13] Moody, R.V. Meyer sets and their duals, The Mathematics of Long-Range Aperiodic Order, Waterloo, ON, 1995, Kluwer Academic, Dordrecht, 1997, pp. 403-441

[14] R.V. Moody, Model sets: a survey, Preprint, 2001

[15] Moody, R.V. Uniform distribution in model sets, Canadian Math. Bull., Volume 45 (2002) no. 1, pp. 123-130

[16] Neveu, J. Processus ponctuels, École d'Été de Probabilités de Saint-Flour, VI-1976, Lecture Notes in Math., 598, Springer-Verlag, Berlin, 1977, pp. 249-445

[17] Schlottmann, M. Generalized model sets and dynamical systems, Directions in Mathematical Quasicrystals, American Mathematical Society, Providence, RI, 2000, pp. 143-159

[18] Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953

[19] Solomyak, B. Spectrum of dynamical systems arising from Delone sets, Quasicrystals and Discrete Geometry, Toronto, ON, 1995, American Mathematical Society, Providence, RI, 1998, pp. 265-275

[20] Wiener, N. The ergodic theorem, Duke Math., Volume 5 (1939), pp. 1-18

Cité par Sources :