Nous déterminons explicitement les points algébriques de degré donné quelconque sur certains quotients de courbes de Fermat de degré 5, 7 ou 11. Cette Note complète les travaux de Gross et Rohrlich (Invent. Math. 44 (1978) 201–224) qui donnent la description de l'ensemble des points algébriques de degré au plus 2 sur les courbes étudiées.
We determine explicitly algebraic points of a given degree on some quotients of Fermat curves of degree 5, 7 or 11. This Note completes previous work of Gross and Rohrlich (Invent. Math. 44 (1978) 201–224) who gave a description of points of degree at most two.
Accepté le :
Publié le :
@article{CRMATH_2003__336_2_117_0, author = {Sall, Oumar}, title = {Points alg\'ebriques sur certains quotients de courbes de {Fermat}}, journal = {Comptes Rendus. Math\'ematique}, pages = {117--120}, publisher = {Elsevier}, volume = {336}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(02)00028-6}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)00028-6/} }
TY - JOUR AU - Sall, Oumar TI - Points algébriques sur certains quotients de courbes de Fermat JO - Comptes Rendus. Mathématique PY - 2003 SP - 117 EP - 120 VL - 336 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)00028-6/ DO - 10.1016/S1631-073X(02)00028-6 LA - fr ID - CRMATH_2003__336_2_117_0 ER -
%0 Journal Article %A Sall, Oumar %T Points algébriques sur certains quotients de courbes de Fermat %J Comptes Rendus. Mathématique %D 2003 %P 117-120 %V 336 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)00028-6/ %R 10.1016/S1631-073X(02)00028-6 %G fr %F CRMATH_2003__336_2_117_0
Sall, Oumar. Points algébriques sur certains quotients de courbes de Fermat. Comptes Rendus. Mathématique, Tome 336 (2003) no. 2, pp. 117-120. doi : 10.1016/S1631-073X(02)00028-6. http://www.numdam.org/articles/10.1016/S1631-073X(02)00028-6/
[1] Abelian varieties and curves in Wd(C), Compositio Math., Volume 78 (1991), pp. 227-238
[2] Abelian varieties and curves in Wdr(C) and points of bounded degree on algebraic curves, Compositio Math., Volume 88 (1993), pp. 235-249
[3] Points of low degree on smooth plane curves, J. Reine Angew. Math., Volume 446 (1994), pp. 81-87
[4] Diophantine approximation on Abelian varieties, Ann. Math. 133 (1991) 549–576
[5] On the divisor class groups of some algebraic curves, English translation: Soviet Math. Dokl., Volume 136 (1961) no. 1, pp. 296-298
[6] Endlichkeitsätze für abelsch Varietäten über Zahlkörpen, Invent. Math., Volume 73 (1983), pp. 349-366
[7] Curves with infinitely many points of fixed degree, Israel J. Math., Volume 85 (1994), pp. 79-83
[8] Some results on the Mordell–Weil group of the Jacobian of the Fermat curve, Invent. Math., Volume 44 (1978), pp. 201-224
[9] Algebraic points of low degree on the Fermat quintic, Acta Arith., Volume 82 (1997) no. 4, pp. 393-401
[10] Points algébriques de petit degré sur les courbes de Fermat, C. R. Acad. Sci. Paris Sér. I, Volume 330 (2000), pp. 67-70
[11] Points cubiques sur la quartique de Klein, C. R. Acad. Sci. Paris Sér. I, Volume 333 (2001), pp. 931-934
[12] Algebraic points of low degree on the Fermat curve of degree seven, Manuscriptc Math., Volume 97 (1998) no. 4, pp. 483-488
[13] Torsion parts of Mordell–Weil groups of Fermat Jacobians, Internat. Math. Res. Notices, Volume 7 (1998), pp. 359-369
[14] Siegel's theorem in the compact case, Ann. Math. 133 (1991) 509–548
Cité par Sources :