En utilisant des extensions S1-centrales de groupoı̈des, nous présentons, dans le cas d'un groupe simple compact G, un modèle de dimension infinie d'une S1-gerbe sur un champ différentiable G/G dont la classe de Dixmier–Douady correspond au générateur canonique de la cohomologie équivariante HG3(G).
Using groupoid S1-central extensions, we present, for a compact simple Lie group G, an infinite dimensional model of S1-gerbe over the differential stack G/G whose Dixmier–Douady class corresponds to the canonical generator of the equivariant cohomology HG3(G).
Accepté le :
Publié le :
@article{CRMATH_2003__336_3_251_0, author = {Behrend, Kai and Xu, Ping and Zhang, Bin}, title = {Equivariant gerbes over compact simple {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {251--256}, publisher = {Elsevier}, volume = {336}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(02)00024-9}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)00024-9/} }
TY - JOUR AU - Behrend, Kai AU - Xu, Ping AU - Zhang, Bin TI - Equivariant gerbes over compact simple Lie groups JO - Comptes Rendus. Mathématique PY - 2003 SP - 251 EP - 256 VL - 336 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)00024-9/ DO - 10.1016/S1631-073X(02)00024-9 LA - en ID - CRMATH_2003__336_3_251_0 ER -
%0 Journal Article %A Behrend, Kai %A Xu, Ping %A Zhang, Bin %T Equivariant gerbes over compact simple Lie groups %J Comptes Rendus. Mathématique %D 2003 %P 251-256 %V 336 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)00024-9/ %R 10.1016/S1631-073X(02)00024-9 %G en %F CRMATH_2003__336_3_251_0
Behrend, Kai; Xu, Ping; Zhang, Bin. Equivariant gerbes over compact simple Lie groups. Comptes Rendus. Mathématique, Tome 336 (2003) no. 3, pp. 251-256. doi : 10.1016/S1631-073X(02)00024-9. http://www.numdam.org/articles/10.1016/S1631-073X(02)00024-9/
[1] Lie group valued moment maps, J. Differential Geom., Volume 48 (1998), pp. 445-495
[2] S1-bundles and gerbes over differential stacks, C. R. Acad. Sci. Paris Sér. I, Volume 336 (2003)
[3] K. Behrend, P. Xu, Differential stacks and gerbes, in preparation
[4] Gerbes on complex reductive Lie groups | arXiv
[5] Group systems, groupoids, and moduli spaces of parabolic bundles, Duke Math. J., Volume 89 (1997), pp. 377-412
[6] The basic gerbe over a compact simple Lie group | arXiv
[7] Loop Groups, Oxford University Press, New York, 1986
[8] The symplectic structure on moduli space, The Floer Memorial Volume, Progr. Math., 133, 1995, pp. 627-635
[9] Extensions of symplectic groupoids and quantization, J. Reine Angew. Math., Volume 417 (1991), pp. 159-189
[10] Morita equivalent symplectic groupoids (Dazord, P.; Weinstein, A., eds.), Symplectic Geometry, Groupoids, and Integrable Systems, Seminaire sud Rhodanien a Berkeley, 1989, 1991, pp. 291-311
Cité par Sources :