Soient M et M′ variétés tridimensionnelles et L un entrelacs dans M′. On prouve que, sous certaines conditions, le degré d'un revêtement ramifié est déterminé par les types topologiques de M et (M′,L).
Let M and M′ be 3-manifolds and L a link in M′. We prove that, under certain conditions, the degree of a branched covering is determined by the topological types of M and (M′,L).
Accepté le :
Publié le :
@article{CRMATH_2003__336_2_169_0, author = {Salgueiro, Ant\'onio M.}, title = {On the degrees of branched coverings over links}, journal = {Comptes Rendus. Math\'ematique}, pages = {169--174}, publisher = {Elsevier}, volume = {336}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(02)00023-7}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)00023-7/} }
TY - JOUR AU - Salgueiro, António M. TI - On the degrees of branched coverings over links JO - Comptes Rendus. Mathématique PY - 2003 SP - 169 EP - 174 VL - 336 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)00023-7/ DO - 10.1016/S1631-073X(02)00023-7 LA - en ID - CRMATH_2003__336_2_169_0 ER -
%0 Journal Article %A Salgueiro, António M. %T On the degrees of branched coverings over links %J Comptes Rendus. Mathématique %D 2003 %P 169-174 %V 336 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)00023-7/ %R 10.1016/S1631-073X(02)00023-7 %G en %F CRMATH_2003__336_2_169_0
Salgueiro, António M. On the degrees of branched coverings over links. Comptes Rendus. Mathématique, Tome 336 (2003) no. 2, pp. 169-174. doi : 10.1016/S1631-073X(02)00023-7. http://www.numdam.org/articles/10.1016/S1631-073X(02)00023-7/
[1] Geometrization on 3-orbifolds of cyclic type, Astérisque, Volume 272 (2000)
[2] The characteristic toric splitting of irreducible compact 3-orbifolds, Math. Ann., Volume 278 (1987), pp. 441-479
[3] Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc., Volume 220 (1979)
[4] Homotopy Equivalences of 3-Manifolds with Boundary, Lect. Notes in Math., 761, Springer, 1979
[5] Hyperbolic Manifolds and Discrete Groups, Progress in Math., 183, Birkhäuser, 2001
[6] Problems in low dimensional manifold theory (Milgram, R.J., ed.), Proc. Sympos. Pure Math., 32, American Mathematical Society, 1978, pp. 273-312
[7] Topology of 3-dimensional manifolds and the embedding problems in minimal surface theory, Ann. Math., Volume 112 (1980), pp. 441-484
[8] Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque, Volume 235 (1996)
[9] Topologie dreidimensionaler gefaserter Räume, Acta Math., Volume 60 (1932), pp. 147-238
[10] Eine Klasse von 3-dimensonalen Mannigfaltigkeiten I, Invent. Math., Volume 3 (1967), pp. 308-333 II, 4 (1967) 87–117
[11] Covering invariants and cohopficity of 3-manifold groups, Proc. London Math. Soc., Volume 68 (1994), pp. 203-224
[12] Covering degrees are determined by graph manifolds involved, Comment. Math. Helv., Volume 74 (1999), pp. 238-247
Cité par Sources :