Topology
On the degrees of branched coverings over links
[Sur les degrés des revêtements ramifiés le long d'entrelacs]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 2, pp. 169-174.

Soient M et M′ variétés tridimensionnelles et L un entrelacs dans M′. On prouve que, sous certaines conditions, le degré d'un revêtement ramifié π:M(M',L) est déterminé par les types topologiques de M et (M′,L).

Let M and M′ be 3-manifolds and L a link in M′. We prove that, under certain conditions, the degree of a branched covering π:M(M',L) is determined by the topological types of M and (M′,L).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)00023-7
Salgueiro, António M. 1, 2

1 Departamento de Matemática da Universidade de Coimbra, Largo D. Dinis, 3000 Coimbra, Portugal
2 Laboratoire Émile Picard, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, France
@article{CRMATH_2003__336_2_169_0,
     author = {Salgueiro, Ant\'onio M.},
     title = {On the degrees of branched coverings over links},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {169--174},
     publisher = {Elsevier},
     volume = {336},
     number = {2},
     year = {2003},
     doi = {10.1016/S1631-073X(02)00023-7},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)00023-7/}
}
TY  - JOUR
AU  - Salgueiro, António M.
TI  - On the degrees of branched coverings over links
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 169
EP  - 174
VL  - 336
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)00023-7/
DO  - 10.1016/S1631-073X(02)00023-7
LA  - en
ID  - CRMATH_2003__336_2_169_0
ER  - 
%0 Journal Article
%A Salgueiro, António M.
%T On the degrees of branched coverings over links
%J Comptes Rendus. Mathématique
%D 2003
%P 169-174
%V 336
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)00023-7/
%R 10.1016/S1631-073X(02)00023-7
%G en
%F CRMATH_2003__336_2_169_0
Salgueiro, António M. On the degrees of branched coverings over links. Comptes Rendus. Mathématique, Tome 336 (2003) no. 2, pp. 169-174. doi : 10.1016/S1631-073X(02)00023-7. http://www.numdam.org/articles/10.1016/S1631-073X(02)00023-7/

[1] Boileau, M.; Porti, J. Geometrization on 3-orbifolds of cyclic type, Astérisque, Volume 272 (2000)

[2] Bonahon, F.; Siebenmann, L. The characteristic toric splitting of irreducible compact 3-orbifolds, Math. Ann., Volume 278 (1987), pp. 441-479

[3] Jaco, W.H.; Shalen, P.B. Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc., Volume 220 (1979)

[4] Johannson, K. Homotopy Equivalences of 3-Manifolds with Boundary, Lect. Notes in Math., 761, Springer, 1979

[5] Kapovich, M. Hyperbolic Manifolds and Discrete Groups, Progress in Math., 183, Birkhäuser, 2001

[6] Kirby, R. Problems in low dimensional manifold theory (Milgram, R.J., ed.), Proc. Sympos. Pure Math., 32, American Mathematical Society, 1978, pp. 273-312

[7] Meeks, W.H.; Yau, S.-T. Topology of 3-dimensional manifolds and the embedding problems in minimal surface theory, Ann. Math., Volume 112 (1980), pp. 441-484

[8] Otal, J.-P. Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque, Volume 235 (1996)

[9] Seifert, H. Topologie dreidimensionaler gefaserter Räume, Acta Math., Volume 60 (1932), pp. 147-238

[10] Waldhausen, F. Eine Klasse von 3-dimensonalen Mannigfaltigkeiten I, Invent. Math., Volume 3 (1967), pp. 308-333 II, 4 (1967) 87–117

[11] Wang, S.; Wu, Y.-Q. Covering invariants and cohopficity of 3-manifold groups, Proc. London Math. Soc., Volume 68 (1994), pp. 203-224

[12] Yu, F.; Wang, S. Covering degrees are determined by graph manifolds involved, Comment. Math. Helv., Volume 74 (1999), pp. 238-247

Cité par Sources :